Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let. S = {1,2,3,4,5}

a) List all the 3-permutations of S.

b) List all the 3 -combinations of S.

Short Answer

Expert verified

(a) The resultant answer is:

123    124    125    132    134    135    142    143    145    152153    154    213    214    215    231    234    235    241    243245    251    253    254    312    314    315    321    324    325341    342    345    351    352    354    412    413    415    421423    425    431    432    435    451    452    453    512    513514    521    523    524    531    532    534    541    542    543

(b) The resultant answer is:

123    124    125    134    135    145    234    235    245    345.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given data

The given data is S = {1,2,3,4,5} .

02

Concept of r -permutation and  r - combination

An r-permutation of a set of elements is an ordering of relements of the set in a row. The number of r-permutations of a set with nelements is P(n,r)=n(n1)(n2)(nr+1).

An r-combination of a set of nelements is a subset that containsof theelements. The number of r-permutations of a set with nelements is

C(n,r)=n!r!(nr)!withn!=n(n1)21.

03

Find all 3 permutations of S

(a)

We need to determine all 3 -permutations of the set S with 5 elements.

S = {1,2,3,4,5}

n = 5

r = 3

Let us first determine the number of 3 -permutations of S:

P (5,3) = 5.4.3

P (5,3) = 60

We thus need to determine all 60 possible orderings of 3 of the 5 elements of .

123    124    125    132    134    135    142    143    145    152153    154    213    214    215    231    234    235    241    243245    251    253    254    312    314    315    321    324    325341    342    345    351    352    354    412    413    415    421423    425    431    432    435    451    452    453    512    513514    521    523    524    531    532    534    541    542    543

04

Find all 3 combinations of S

(b)

We need to determine all 3 -combinations of the set S with 5 elements.

n = 5

r = 3

Let us first determine the number of 3 -combinations of S:

C(5,3)=5!3!(53)!=5!3!2!=5432132121=5421

Simplifying,

C(5,3)=202=10

We thus need to determine all 10 possible subsets of 3 of the 5 elements of S.

123    124    125    134    135    145    234    235    245    345.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free