Chapter 6: Q44E (page 433)
In how many ways can a dozen books be placed on four distinguishable shelves
a) if the books are indistinguishable copies of the same title?
b) if no two books are the same, and the positions of the books on the shelves matter? (Hint: Break this into 12 tasks, placing each book separately. Start with the sequence 1, 2, 3, 4 to represent the shelves. Represent the books by bi , i = 1, 2, . . . , 12. Place b1 to the right of one of the terms in 1, 2, 3, 4. Then successively place b2, b3, . . . , and b12.)
Short Answer
- Therefore, there are \(455\)different ways
- Therefore, there are \(217945728000\) different ways if no two books are the same, and the positions of the books on the shelves matter