\(3\)are selected from the block of\(45\):
\(\begin{array}{l}C(45,3) = \frac{{45!}}{{3!(45 - 3)!}}\\C(45,3) = \frac{{45!}}{{3!42!}}\\C(45,3) = 14,190\end{array}\)
\(4\)are selected from the block of\(57\):
\(\begin{array}{l}C(57,4) = \frac{{57!}}{{4!(57 - 4)!}}\\C(57,4) = \frac{{57!}}{{4!53!}}\\C(57,4) = 395,010\end{array}\)
\(12 - 4 - 3 = 5\)are selected from the block of\(69\)(since in total,\(12\)countries are selected)
\(\begin{array}{l}C(69,5) = \frac{{69!}}{{5!(69 - 5)!}}\\C(69,5) = \frac{{69!}}{{5!64!}}\\C(69,5) = 11,238,513\end{array}\)
Use the product rule:
\(14,190 \cdot 395,010 \cdot 11,238,513 = 62,994,022,035,644,700\)
Hence, the required ways are\(62,994,022,035,644,700\).