Chapter 6: Q38E (page 422)
Give a combinatorial proof that if n is a positive integer then\(\sum\limits_{k = 0}^n {{k^2}\left( {\begin{array}{*{20}{c}}n\\k\end{array}} \right)} = n(n + 1){2^{n - 2}}\). (Hint: Show that both sides count the ways to select a subset of a set of n elements together with two not necessarily distinct elements from this subset. Furthermore, express the right-hand side as \(n(n + 1){2^{n - 2}} + n{2^{n - 1}}\).)
Short Answer
\(\sum\limits_{k = 0}^r {{k^2}\left( {\begin{array}{*{20}{c}}n\\k\end{array}} \right)} = n({2^{n - 1}}) + n(n - 1){2^{n - 2}} = n(n + 1){2^{n - 2}}\)