Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many strings with seven or more characters can be formed from the letters in EVERGREEN?

Short Answer

Expert verified

Therefore, there are\(19635\)different strings formed.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Step 1: Definitions

Sum rule

If an event can occur either in m ways or in n ways(non-overlapping), the number of ways the event can occur is then the addition of m and n.

02

Step 2: Distribution of letters

Distributing n distinguishable objects into k distinguishable boxes such that \({n_i}\)objects are placed in box i (\(i = 1,2,3,4,5\))

The word EVERGREEN contains\(4Es,1V,2Rs,1G,1N\). We are only interested in words that have seven or more characters.

There are nine letters\(4Es,1V,2Rs,1G,1N\)

\(\frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{9!}}{{4!1!2!1!1!}}\)

Now for eight letters

\(4E,1V,2R,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{8!}}{{4!1!2!1!}} = 840\)

\(4E,1V,2R,1N \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{8!}}{{4!1!2!1!}} = 840\)

\(4E,2R,1G,1N \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{8!}}{{4!1!2!1!1!}} = 840\)

\(4E,1V,1R,1G,1N \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{8!}}{{4!1!1!1!1!}} = 1680\)

\(3E,1V,2R,1G,1N \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{8!}}{{3!1!2!1!1!}} = 3360\)

03

Step 3: 7 letters

\(4E,1V,2R \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{4!1!2!}} = 105\)

\(4E,2R,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{4!1!2!}} = 105\)

\(4E,2R,1N \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{4!1!2!}} = 105\)

\(4E,1V,1R,1N \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{4!1!1!1!}} = 210\)

\(4E,1V,1R,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{4!1!1!1!}} = 210\)

\(4E,1R,1N,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{4!1!1!1!}} = 210\)

\(4E,1V,1N,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{4!1!1!1!}} = 210\)

\(3E,1V,2R,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{3!1!2!1!}} = 420\)

\(3E,1V,2R,1N \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{3!1!2!1!}} = 420\)

\(3E,2R,1N,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{3!1!2!1!}} = 420\)

\(3E,1V,1R,1N,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{3!1!1!1!1!}} = 840\)

\(2E,1V,2R,1N,1G \Rightarrow \frac{{n!}}{{{n_1}!{n_2}!......{n_k}!}} = \frac{{7!}}{{3!1!2!1!}} = 1260\)

04

Step 4: Total

Use the sum rule:

\(\begin{array}{l}7560 + (840 + 840 + 840 + 1680 + 3360) + \\(105 + 105 + 105 + 210 + 210 + 210 + 420 + 420 + 420 + 840 + 1260)\\ = 7560 + 7560 + 4515\\ = 19635\end{array}\)

Therefore, there are\(19635\)different strings formed.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free