Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the binomial theorem using mathematical induction.

Short Answer

Expert verified

By the principle of mathematical induction, \(P(n)\) is true for all positive integers \(n\). The required expression is \({(a + b)^n} = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} {a^{n - k}}{b^k}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Given variables and integer

\(a\)and \(b\) are variables

\({\bf{n}}\) is a positive integer

02

Definition of Binomial theorem

Binomial theorem, states that for any positive integer\(n\), the\(n\)th power of the sum of two numbers\(a\)and\(b\)may be expressed as the sum of\(n + 1\)terms of the form.

03

Proof by induction

Let \(P(n)\) be the statement.

\({(a + b)^n} = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} {a^{n - k}}{b^k}\)

Basis step:

\(n = 1\)

\(\begin{array}{l}{(a + b)^n} = {(a + b)^1}\\{(a + b)^n} = a + b\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} {a^{n - k}}{b^k}\\{(a + b)^n} = \sum\limits_{k = 0}^1 {\left( {\begin{array}{*{20}{l}}1\\k\end{array}} \right)} {a^{1 - k}}{b^k}\end{array}\)

\(\begin{array}{l}{(a + b)^n} = {a^1}{b^0} + {a^0}{b^1}\\{(a + b)^n} = a + b\end{array}\)

Thus \(P(1)\) is true.

Inductive step:

Let \(P(m)\) be true.

\({(a + b)^m} = \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k}}{b^k}\)

04

Use distributive property and Pascal’s identity

prove that \(P(m + 1)\) is true:

\({(a + b)^{m + 1}} = (a + b){(a + b)^m}\)

Since \(P(k)\) is true.

\({(a + b)^{m + 1}} = (a + b)\left( {\sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k}}{b^k}} \right)\)

Use distributive property:

\(\begin{array}{l}{(a + b)^{m + 1}} = \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k + 1}}{b^k} + \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k}}{b^{k + 1}}\\{(a + b)^{m + 1}} = \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k + 1}}{b^k} + \sum\limits_{k = 1}^{m + 1} {\left( {\begin{array}{*{20}{c}}m\\{k - 1}\end{array}} \right)} {a^{m - (k - 1)}}{b^k}\end{array}\)

\(\begin{array}{l}{(a + b)^{m + 1}} = \left( {\begin{array}{*{20}{c}}m\\0\end{array}} \right){a^{m + 1}}{b^0} + \sum\limits_{k = 1}^m {\left( {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}m\\{k - 1}\end{array}} \right)} \right)} {a^{m - k + 1}}{b^k} + \left( {\begin{array}{*{20}{c}}m\\m\end{array}} \right){a^0}{b^{m + 1}}\\{(a + b)^{m + 1}} = {a^{m + 1}} + \sum\limits_{k = 1}^m {\left( {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}m\\{k - 1}\end{array}} \right)} \right)} {a^{m - k + 1}}{b^k} + {b^{m + 1}}\end{array}\)

Use Pascal's identity:

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) + \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{m + 1}\\0\end{array}} \right){a^{m + 1}}{b^0} + \sum\limits_{k = 1}^m {\left( {\begin{array}{*{20}{c}}{m + 1}\\k\end{array}} \right)} {a^{m - k + 1}}{b^k} + \left( {\begin{array}{*{20}{c}}{m + 1}\\{m + 1}\end{array}} \right){a^0}{b^{m + 1}}\\\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \sum\limits_{k = 0}^{m + 1} {\left( {\begin{array}{*{20}{c}}{m + 1}\\k\end{array}} \right)} {a^{m - k + 1}}{b^k}\end{array}\)

Thus \(P(k + 1)\) is true.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free