Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove the binomial theorem using mathematical induction.

Short Answer

Expert verified

By the principle of mathematical induction, \(P(n)\) is true for all positive integers \(n\). The required expression is\({(a + b)^n} = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} {a^{n - k}}{b^k}\).

Step by step solution

01

Given variables and integer

\(a\)and \(b\) are variables

\({\bf{n}}\) is a positive integer

02

Definition of Binomial theorem

Binomial theorem, states that for any positive integer\(n\), the\(n\)th power of the sum of two numbers\(a\)and\(b\)may be expressed as the sum of\(n + 1\)terms of the form.

03

Proofby induction

Let \(P(n)\) be the statement.

\({(a + b)^n} = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} {a^{n - k}}{b^k}\)

Basis step:

\(n = 1\)

\(\begin{array}{l}{(a + b)^n} = {(a + b)^1}\\{(a + b)^n} = a + b\sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} {a^{n - k}}{b^k}\\{(a + b)^n} = \sum\limits_{k = 0}^1 {\left( {\begin{array}{*{20}{l}}1\\k\end{array}} \right)} {a^{1 - k}}{b^k}\end{array}\)

\(\begin{array}{l}{(a + b)^n} = {a^1}{b^0} + {a^0}{b^1}\\{(a + b)^n} = a + b\end{array}\)

Thus \(P(1)\) is true.

Inductive step:

Let \(P(m)\) be true.

\({(a + b)^m} = \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k}}{b^k}\)

04

Step 4:Use distributive property and Pascal’s identity

prove that \(P(m + 1)\) is true:

\({(a + b)^{m + 1}} = (a + b){(a + b)^m}\)

Since \(P(k)\) is true.

\({(a + b)^{m + 1}} = (a + b)\left( {\sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k}}{b^k}} \right)\)

Use distributive property:

\(\begin{array}{l}{(a + b)^{m + 1}} = \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k + 1}}{b^k} + \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k}}{b^{k + 1}}\\{(a + b)^{m + 1}} = \sum\limits_{k = 0}^m {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right)} {a^{m - k + 1}}{b^k} + \sum\limits_{k = 1}^{m + 1} {\left( {\begin{array}{*{20}{c}}m\\{k - 1}\end{array}} \right)} {a^{m - (k - 1)}}{b^k}\end{array}\)

\(\begin{array}{l}{(a + b)^{m + 1}} = \left( {\begin{array}{*{20}{c}}m\\0\end{array}} \right){a^{m + 1}}{b^0} + \sum\limits_{k = 1}^m {\left( {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}m\\{k - 1}\end{array}} \right)} \right)} {a^{m - k + 1}}{b^k} + \left( {\begin{array}{*{20}{c}}m\\m\end{array}} \right){a^0}{b^{m + 1}}\\{(a + b)^{m + 1}} = {a^{m + 1}} + \sum\limits_{k = 1}^m {\left( {\left( {\begin{array}{*{20}{c}}m\\k\end{array}} \right) + \left( {\begin{array}{*{20}{c}}m\\{k - 1}\end{array}} \right)} \right)} {a^{m - k + 1}}{b^k} + {b^{m + 1}}\end{array}\)

Use Pascal's identity:

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) + \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{m + 1}\\0\end{array}} \right){a^{m + 1}}{b^0} + \sum\limits_{k = 1}^m {\left( {\begin{array}{*{20}{c}}{m + 1}\\k\end{array}} \right)} {a^{m - k + 1}}{b^k} + \left( {\begin{array}{*{20}{c}}{m + 1}\\{m + 1}\end{array}} \right){a^0}{b^{m + 1}}\\\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \sum\limits_{k = 0}^{m + 1} {\left( {\begin{array}{*{20}{c}}{m + 1}\\k\end{array}} \right)} {a^{m - k + 1}}{b^k}\end{array}\)

Thus \(P(k + 1)\) is true.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free