Considering the given information:
Numbers are:
\(\begin{array}{l}{\rm{234561,231456,165432,156423,543216,541236,231465,314562,432561,}}\\{\rm{654321,654321,435612}}\end{array}\)
Using the following concept:
Order of lexicography:
A sequence of numerical digits is used to represent N on a negative integer in lexicographic order.
\(\begin{array}{l}{\rm{156423 < 165432 < 231456 < 231465 < 234561 < 31562 < 432561 < 435612 < 541236 < 541236}}\\{\rm{ < 543216 < 654312 < 654321}}\end{array}\)
Since the first string appears in the lexicographic order, the second and so on are shown as:
\(\begin{array}{*{20}{l}}{{\rm{156423,165432,231456,231465,234561,31562,432561,435612,541236,541236,}}}&{\rm{ }}\\{{\rm{543216,654312,654321}}}&{}\end{array}\)
Therefore, the required lexicographic order is:
\(\begin{array}{*{20}{l}}{{\rm{156423,165432,231456,231465,234561,31562,432561,435612,541236,541236,}}}&{\rm{ }}\\{{\rm{543216,654312,654321}}{\rm{.}}}&{}\end{array}\)