Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Let\(n\)and \(k\) be integers with \(1 \le k \le n\). Show that

\(\sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2 - \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right)\)

Short Answer

Expert verified

The expression\(\sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2 - \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right)\)is proved.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Formula of Pascal identity

Pascal identity:

\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) + \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\)

02

Calculate the coefficient of \({x^{n + 1}}\) in \({(1 + x)^{2n}}\) in two ways

Coefficient of \({x^k}\) in \({(1 + x)^n}\) multiplied by coefficient of \({(1 + x)^{n - k + 1}}\) in\({(1 + x)^n}\)over all possible values of \(k = \sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \cdot \left( {\begin{array}{*{20}{c}}n\\{n - k + 1}\end{array}} \right)\).

Now, \(k = \sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \cdot \left( {\begin{array}{*{20}{l}}n\\{k - 1}\end{array}} \right)\).

Coefficient of\({x^{n + 1}}\)in\({(1 + x)^{2n}}\)is \(\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right)\).

03

Equate the coefficients and use the Pascal identity to prove the expression

Let \({\bf{n}}\) be a positive integer.

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right)\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 1}\\{n + 1}\end{array}} \right)\end{array}\)

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 1)!}}{{(n + 1)!(2n + 1 - (n + 1))!}}\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 1)!}}{{(n + 1)!n!}}\end{array}\)

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 1)!}}{{(n + 1)!n!}} \cdot \frac{{2n + 2}}{{2n + 2}}\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 2)!}}{{(n + 1)!n!}} \cdot \frac{1}{{2n + 2}}\end{array}\)

\(\begin{array}{l}\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 2)!}}{{(n + 1)!n!}} \cdot \frac{1}{{2(n + 1)}}\\\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \frac{{(2n + 2)!}}{{(n + 1)!(n + 1)!}} \cdot \frac{1}{2}\end{array}\)

\(\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2\)

Hence, \(\sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2 - \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free