Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if n and r are nonnegative integers and\({\bf{n}}{\rm{ }} \ge {\rm{ }}{\bf{r}}\), then\(\;{\bf{P}}{\rm{ }}\left( {{\bf{n}}{\rm{ }} + {\rm{ }}{\bf{1}},{\bf{r}}} \right){\rm{ }} = {\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{r}}} \right)\left( {{\bf{n}}{\rm{ }} + {\rm{ }}{\bf{1}}} \right)/\left( {{\bf{n}}{\rm{ }} + {\rm{ }}{\bf{1}}{\rm{ }} - {\rm{ }}{\bf{r}}} \right)\).

Short Answer

Expert verified

The given statement is verified,

\(P(n + 1,r) = \frac{{P(n,r) \cdot (n + 1)}}{{(n + 1 - r)}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition permutation and combination

Definition permutation (order is important):

\(P(n,r) = \frac{{n!}}{{(n - r)!}}\)

Definition combination (order is not important):

\(C(n,r) = \left( {\begin{array}{*{20}{l}}n\\r\end{array}} \right) = \frac{{n!}}{{r!(n - r)!}}\)

With\(n! = n \cdot (n - 1) \cdot \ldots \cdot 2 \cdot 1\)

02

Step 2: Proof

Let us consider the given values and simplify,

PROOF

\(P(n + 1,r){\rm{ }} = \frac{{(n + 1)!}}{{(n + 1 - r)!}}{\rm{ }}\) Definition permutation

\( = \frac{{(n + 1) \cdot n!}}{{(n + 1 - r) \cdot (n - r)!}}\;\;\;\) Use the definition of a factorial

\( = \frac{{(n + 1) \cdot P(n,r)}}{{(n + 1 - r)}}\;\;\;\) Use the definition of permutation

\( = \frac{{P(n,r) \cdot (n + 1)}}{{(n + 1 - r)}}\;\;\)Use commutative property

Therefore, answer is \(P(n + 1,r) = \frac{{P(n,r) \cdot (n + 1)}}{{(n + 1 - r)}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free