Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find n if a) \({\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right){\rm{ }} = {\rm{ }}{\bf{45}}.{\rm{ }}{\bf{b}}){\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{3}}} \right){\rm{ }} = {\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right).{\rm{ }}{\bf{c}}){\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{5}}} \right){\rm{ }} = {\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right)\)

Short Answer

Expert verified

The required solutions are:

(a)\(\;N = 10\)

(b)\(N = 8\)

(c) \(N = 7\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Find n if \({\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right){\rm{ }} = {\rm{ }}{\bf{45}}\)

(a)

Let us solve this problem,

\(C(n,2) = 45\) Given

\( \Leftrightarrow \frac{{n!}}{{2!(n - 2)!}} = 45\) Definition combination

\( \Leftrightarrow \frac{{n \cdot (n - 1)}}{2} = 45\) Use the definition of a factorial

\( \Leftrightarrow \frac{{{n^2} - n}}{2} = 45\) Use distributive property

\({n^2} - n = 90\) Multiply each side by 2

\( \Leftrightarrow \;\;\;{n^2} - n - 90 = 0\) Subtract 90 from each side of the equation

\( \Leftrightarrow \;\;\;(n + 9)(n - 10) = 0\) Factorize

\( \Leftrightarrow \;\;\;n + 9 = 0{\rm{ or }}n - 10 = 0\)Zero product property

\( \Leftrightarrow \;\;\;n = - 9{\rm{ or }}n = 10\) Solve each equality

\(\begin{array}{l}\\ \Leftrightarrow \;\;\;n = 10\end{array}\) Since n is a positive integer

Therefore, the required solution is\(n = 10\).

02

Find n if \({\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{3}}} \right){\rm{ }} = {\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right)\)

(b)

Let us simplify,

\(C(n,3) = P(n,2)\) Given

\( \Leftrightarrow \frac{{n!}}{{3!(n - 3)!}} = \frac{{n!}}{{(n - 2)!}}\) Definition permutation and combination

\( \Leftrightarrow \frac{{n \cdot (n - 1) \cdot (n - 2)}}{6} = n \cdot (n - 1)\) Use the definition of a factorial

\( \Leftrightarrow \frac{{n - 2}}{6} = 1\) Divide each side by \(n \cdot (n - 1)\) since \(n \ge 3\)

\( \Leftrightarrow n - 2 = 6\) Multiply each side by 6

\( \Leftrightarrow n = 8\) Add 2 to each side of the equation

Therefore, the required solution is\(n = 8\).

03

Find n if \({\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{5}}} \right){\rm{ }} = {\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right)\)

Let us solve this problem,

\(C(n,5) = C(n,2)\) Given

\( \Leftrightarrow \;\;\;\frac{{n!}}{{5!(n - 5)!}} = \frac{{n!}}{{2!(n - 2)!}}\) Definition combination

\( \Leftrightarrow \;\;\;\frac{{n \cdot (n - 1) \cdot (n - 2) \cdot (n - 3) \cdot (n - 4)}}{{120}} = \frac{{n \cdot (n - 1)}}{2}\) Use the definition of a factorial

\( \Leftrightarrow \;\;\;\frac{{(n - 2) \cdot (n - 3) \cdot (n - 4)}}{{120}} = \frac{1}{2}\) Divide each side by \(n \cdot (n - 1)\) (Since \(n \ge 5\) )

\( \Leftrightarrow \;\;\;(n - 2) \cdot (n - 3) \cdot (n - 4) = 60\) Multiply each side by 120

\( \Leftrightarrow \;\;\;\left( {{n^2} - 5n + 6} \right) \cdot (n - 4) = 60\) Use distributive property

\( \Leftrightarrow \;\;\;{n^3} - 9{n^2} + 26n - 24 = 60\) Use distributive property

\( \Leftrightarrow \;\;\;{n^3} - 9{n^2} + 26n - 84 = 0\) Subtract 60 from each side of the equation \( \Leftrightarrow \;\;\;(n - 7)\left( {{n^2} - 2n + 12} \right) = 0\) Factorize

\( \Leftrightarrow \;\;\;n - 7 = 0{\rm{ or }}{n^2} - 2n + 12 = 0\) Zero product property

\(\begin{array}{l}\\ \Leftrightarrow \;\;\;n = 7{\rm{ or No solution }}\end{array}\) Solve each equality

\( \Leftrightarrow \;\;\;n = 7\) Since the second equality had no solution

Thus, the required solution is \(n = 7\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free