Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(n\)and\(k\)are positive integers, then\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = (n + 1)\left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right)/k\). Use this identity to construct an inductive definition of the binomial coefficients.

Short Answer

Expert verified

Show that if \(n\)and\(k\)are positive integers, then\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = (n + 1)\left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right)/k\). Use this identity to construct an inductive definition of the binomial coefficients.

Step by step solution

01

Given expression

Here,\(n\) and \(k\) are positive integers.

02

Definition of permutation and combination

\(P(n,r) = \frac{{n!}}{{(n - r)!}}\)Definition combination (order is not important):

\(C(n,r) = \left( {\begin{array}{*{20}{l}}n\\r\end{array}} \right) = \frac{{n!}}{{r!(n - r)!}}\)with\(n! = n \cdot (n - 1) \cdot \ldots \cdot 2 \cdot 1\)

03

Prove the given expression by the formula of permutation and combination

Use the formula of permutation and combination:

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \frac{{(n + 1)!}}{{k!((n + 1) - k)!}}\\ = \frac{{(n + 1)!}}{{k!(n + 1 - k)!}}\end{array}\)

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \frac{{(n + 1) \cdot n \cdot (n - 1) \cdot \ldots \cdot 2 \cdot 1}}{{k \cdot (k - 1) \cdot \ldots \cdot 2 \cdot 1 \cdot (n + 1 - k)!}}\\ = \frac{{(n + 1) \cdot n!}}{{k \cdot (k - 1)! \cdot (n + 1 - k)!}}\end{array}\)

\(\begin{array}{c}\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \frac{{n + 1}}{k} \cdot \frac{{n!}}{{(k - 1)! \cdot (n + 1 - k)!}}\\ = \frac{{n + 1}}{k} \cdot \frac{{n!}}{{(k - 1)! \cdot (n - (k - 1))!}}\end{array}\)

\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = (n + 1)\left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right)/k\)

So,\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = \frac{{n + 1}}{k} \cdot \left( {\begin{array}{*{20}{l}}n\\{k - 1}\end{array}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free