Chapter 6: Q19SE (page 440)
Show that the decimal expansion of a rational number must repeat itself from some point onward.
Short Answer
Hence, the given statement is shown.
Chapter 6: Q19SE (page 440)
Show that the decimal expansion of a rational number must repeat itself from some point onward.
Hence, the given statement is shown.
All the tools & learning materials you need for study success - in one app.
Get started for freea) What is Pascal’s triangle?
b) How can a row of Pascal’s triangle be produced from the one above it?
Let\(n\)be a positive integer. Show that\(\left( {\begin{array}{*{20}{c}}{2n}\\{n + 1}\end{array}} \right) + \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2\).
How many permutations of the letters \(ABCDEFG\) contain
a) the string \(BCD\)?
b) the string \(CFGA\)?
c) the strings \(BA\) and \(GF\)?
d) the strings \(ABC\)and \(DE\)?
e) the strings \(ABC\)and \(CDE\)?
f) the strings \(CBA\)and \(BED\)?.
What is the coefficient of?
Give a combinatorial proof that\(\sum\limits_{k = 1}^n k \cdot {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)^2} = n \cdot \left( {\begin{array}{*{20}{c}}{2n - 1}\\{n - 1}\end{array}} \right)\). (Hint: Count in two ways the number of ways to select a committee, with\(n\)members from a group of\(n\)mathematics professors and\(n\)computer science professors, such that the chairperson of the committee is a mathematics professor.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.