Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Suppose that a large family has 14 children, including two sets of identical triplets, three sets of identical twins, and two individual children. How many ways are there to seat these children in a row of chairs if the identical triplets or twins cannot be distinguished from one another?

Short Answer

Expert verified

302,702,400 ways to seat 14 children when there are 2 identical triplets and 3 pair of identical twins.

Step by step solution

01

Step 1: Use the formula for string factorial

Total number of arrangements of n objects if al are different = n!

If r! of them are same number of ways are given by

\(\begin{array}{l}\frac{{n!}}{{{n_1}!{n_2}!..{n_k}!}} = \frac{{n!}}{{r!}}\\r! = {n_1}!{n_2}!..{n_k}!\end{array}\)

The n! Is string length

r! are outcome of strings

02

Step 2: Solution of strings of 20-decimal digits

Let’s, applied r! and n! values,

There are 2 set identical triplets and 3 sets of identical twins

Here,

\(\begin{array}{l}n! = 14!\\r! = 3!,3!,2!,2!,2!\\\frac{{n!}}{{r!}} = \frac{{14!}}{{3!.3!.2!.2!.2!}}\\\frac{{n!}}{{r!}} = 302,702,400\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

An ice cream parlour has \({\rm{28}}\) different flavours, \({\rm{8}}\) different kinds of sauce, and \({\rm{12}}\) toppings.

a) In how many different ways can a dish of three scoops of ice cream be made where each flavour can be used more than once and the order of the scoops does not matter?

b) How many different kinds of small sundaes are there if a small sundae contains one scoop of ice cream, a sauce, and a topping?

c) How many different kinds of large sundaes are there if a large sundae contains three scoops of ice cream, where each flavour can be used more than once and the order of the scoops does not matter; two kinds of sauce, where each sauce can be used only once and the order of the sauces does not matter; and three toppings, where each topping can be used only once and the order of the toppings does not matter?

In how many ways can a set of two positive integers less than 100be chosen?

Let\(n\)and \(k\) be integers with \(1 \le k \le n\). Show that

\(\sum\limits_{k = 1}^n {\left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)} \left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right) = \left( {\begin{array}{*{20}{c}}{2n + 2}\\{n + 1}\end{array}} \right)/2 - \left( {\begin{array}{*{20}{c}}{2n}\\n\end{array}} \right)\)

a) Derive a formula for the number of permutations ofobjects of k different types, where there aren1 indistinguishable objects of type one,n2 indistinguishable objects of type two,..., andnk indistinguishable objects of type k.

b) How many ways are there to order the letters of the word INDISCREETNESS?

How many solutions are there to the equation x1+x2+x3+x4=17wherex1+x2+x3+x4are nonnegative integers?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free