Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Describe an algorithm for generating all the combinations of the set of the n smallest positive integers.

Short Answer

Expert verified

Algorithm for generating all the combinations of the set of the n smallest positive integers is –

\[{\rm{i = 0}}\]for\[{\rm{p = 1}}\]to\[{\rm{n - 1}}\]

\[\begin{array}{c}{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = 123}}...{\rm{(p - 1)p}}\end{array}\]

For \[{\rm{m = 1}}\] to \[{\rm{p}}\]

\[{{\rm{a}}_{\rm{m}}}{\rm{ = m}}\]

While\[{{\rm{d}}_i} \ne {\rm{n(n - 1)}}....{\rm{(n - p + 1)}}\]

\[{\rm{j = r}}\]

While\[{{\rm{a}}_{\rm{j}}}{\rm{ = n - r + j}}\]

\[{\rm{j = j - 1, }}{{\rm{a}}_{\rm{j}}}{\rm{ = }}{{\rm{a}}_{\rm{j}}}{\rm{ + 1}}\]

For\[{\rm{k = j + 1 to r}}\]

\[\begin{array}{c}{{\rm{a}}_{\rm{k}}}{\rm{ = }}{{\rm{a}}_{\rm{j}}}{\rm{ + k - 1}}\\{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = }}{{\rm{a}}_{\rm{1}}}{{\rm{a}}_{\rm{2}}}...{{\rm{a}}_{\rm{p}}}\end{array}\]

\[\begin{array}{c}{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = 123}}...{\rm{(n - 1)n}}\end{array}\]

Return \[{{\rm{d}}_{\rm{1}}}{\rm{,}}{{\rm{d}}_{\rm{2}}}{\rm{,}}...{\rm{,}}{{\rm{d}}_i}\]

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Concept Introduction

A permutation is the process of putting things or numbers in a particular order.

Combinations are a method of picking things or numbers from a set of objects or a collection without regard for their order.

02

Finding the first Combination

Name the algorithm as "combination" and the positive integer be n.

Algorithm combination ( n: positive integer)

It is needed to determine combination by increasing values of p in the combination.

\[{\rm{i = 0}}\]for\[{\rm{p = 1}}\]to\[{\rm{n - 1}}\]

Define\[{{\rm{d}}_{\rm{i}}}\]as the first combination in lexicographic order with\[{\rm{p}}\]values and\[{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{,}}....{{\rm{a}}_{\rm{n}}}\]are the corresponding values.

\[\begin{array}{c}{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = 123}}...{\rm{[p - 1)p}}\end{array}\]

For \[{\rm{m = 1}}\] to \[{\rm{p}}\]

\[{{\rm{a}}_{\rm{m}}}{\rm{ = m}}\]

03

Finding the next Combination

Use the algorithm for obtaining the next combination in lexicographic order.

While\[{{\rm{d}}_i} \ne {\rm{n(n - 1)}}....{\rm{(n - p + 1)}}\]

\[{\rm{j = r}}\]

While\[{{\rm{a}}_{\rm{j}}}{\rm{ = n - r + j}}\]

\[{\rm{j = j - 1, }}{{\rm{a}}_{\rm{j}}}{\rm{ = }}{{\rm{a}}_{\rm{j}}}{\rm{ + 1}}\]

For\[{\rm{k = j + 1 to r}}\]

\[\begin{array}{c}{{\rm{a}}_{\rm{k}}}{\rm{ = }}{{\rm{a}}_{\rm{j}}}{\rm{ + k - 1}}\\{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = }}{{\rm{a}}_{\rm{1}}}{{\rm{a}}_{\rm{2}}}...{{\rm{a}}_{\rm{p}}}\end{array}\]

Next determine last combination which is length\[n\]for\[{\rm{1}}\]to\[n\].

\[\begin{array}{c}{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = 123}}...{\rm{(n - 1)n}}\end{array}\]

Finally, return all combinations

Return \[{{\rm{d}}_{\rm{1}}}{\rm{,}}{{\rm{d}}_{\rm{2}}}{\rm{,}}...{\rm{,}}{{\rm{d}}_i}\]

04

Finding the Algorithm

Combining all these steps, the algorithm is obtained –

\[{\rm{i = 0}}\]for\[{\rm{p = 1}}\]to\[{\rm{n - 1}}\]

\[\begin{array}{c}{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = 123}}...{\rm{(p - 1)p}}\end{array}\]

For \[{\rm{m = 1}}\] to \[{\rm{p}}\]

\[{{\rm{a}}_{\rm{m}}}{\rm{ = m}}\]

While\[{{\rm{d}}_i} \ne {\rm{n(n - 1)}}....{\rm{(n - p + 1)}}\]

\[{\rm{j = r}}\]

While\[{{\rm{a}}_{\rm{j}}}{\rm{ = n - r + j}}\]

\[{\rm{j = j - 1, }}{{\rm{a}}_{\rm{j}}}{\rm{ = }}{{\rm{a}}_{\rm{j}}}{\rm{ + 1}}\]

For\[{\rm{k = j + 1 to r}}\]

\[\begin{array}{c}{{\rm{a}}_{\rm{k}}}{\rm{ = }}{{\rm{a}}_{\rm{j}}}{\rm{ + k - 1}}\\{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = }}{{\rm{a}}_{\rm{1}}}{{\rm{a}}_{\rm{2}}}...{{\rm{a}}_{\rm{p}}}\end{array}\]

\[\begin{array}{c}{\rm{i = i + 1}}\\{{\rm{d}}_{\rm{i}}}{\rm{ = 123}}...{\rm{(n - 1)n}}\end{array}\]

Return\[{{\rm{d}}_{\rm{1}}}{\rm{,}}{{\rm{d}}_{\rm{2}}}{\rm{,}}...{\rm{,}}{{\rm{d}}_i}\]

Therefore, the algorithm is obtained.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free