Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that the correspondence described in the preamble is a bijection between the set of permutations of \({\rm{\{ 1,2,3, \ldots ,n\} }}\)and the nonnegative integers less than n !.

Short Answer

Expert verified

The assignment using cantor integers between set of permutation of \({\rm{\{ 1,2,3, \ldots \ldots }}..{\rm{n\} }}\)& the non-negative integers less than n ! is a bisection.

Step by step solution

01

Definition of Concept

Permutations: A permutation of a set is a loosely defined arrangement of its members into a sequence or linear order, or, if the set is already ordered, a rearrangement of its elements, in mathematics. The act of changing the linear order of an ordered set is also referred to as "permutation."

Lexicographic order: The lexicographic or lexicographical order (also known as lexical order or dictionary order) in mathematics is a generalisation of the alphabetical order of dictionaries to sequences of ordered symbols or, more broadly, elements of a totally ordered set.

02

List all 3-permutations of given set

Considering the given information:

The set of permutation of\({\rm{\{ 1,2,3, \ldots \ldots n\} }}\)& non negative integers less than n !.

Using the following concept:

There are n ! permutation of n symbols.

If \({{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{, \ldots \ldots \ldots }}{{\rm{x}}_{\rm{x}}}\) is permutation then respective cantor digits are \({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots \ldots \ldots }}{{\rm{a}}_{{\rm{a - 1}}}}{\rm{ }}\)&integer of cantor expansion is\({{\rm{a}}_{\rm{1}}}{\rm{(1!) + }}{{\rm{a}}_{\rm{2}}}{\rm{(2!) + \ldots \ldots \ldots }}..{\rm{ + }}{{\rm{a}}_{{\rm{n - 1}}}}{\rm{(n - 1)!}}\).

Using cantor expansion, we can show that assignment is bisection by sassing each permutation with an integer k such that\(1 \le k \le n\)!

Assume\({{\rm{x}}_{\rm{1}}}{\rm{,}}{{\rm{x}}_{\rm{2}}}{\rm{ \ldots \ldots }}..{{\rm{x}}_{\rm{n}}}\) is a permutation than respective canton digits are\({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots \ldots \ldots }}{{\rm{a}}_{{\rm{n - 1}}}}\)and integer of enactor expansion is\({a_1}(1!) + {a_2}(2!) + \ldots \ldots \ldots .. + {a_{n - 1}}(n - 1)! = k \le n!\)It is clear that different permeation is assigned to different integers.

Using contra passive statement suppose \({\rm{k = m}}\) such that \({{\rm{a}}_{\rm{1}}}{\rm{(1!) + }}{{\rm{a}}_{\rm{2}}}{\rm{(2!) + 3(3!) + \ldots \ldots \ldots }}..{\rm{ + }}{{\rm{a}}_{{\rm{n - 1}}}}{\rm{(n - 1)! = }}{{\rm{b}}_{\rm{1}}}{\rm{(1!) + }}{{\rm{b}}_{\rm{2}}}{\rm{(2!) + \ldots }}\)than the only possibly is \({\rm{ + }}{{\rm{b}}_{{\rm{n - 1}}}}{\rm{(n - 1!)}}{{\rm{a}}_{\rm{1}}}{\rm{ = }}{{\rm{b}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{ = }}{{\rm{b}}_{\rm{2}}}{\rm{, \ldots \ldots \ldots \ldots }}{\rm{.}}{{\rm{a}}_{{\rm{n - 1}}}}{\rm{ = }}{{\rm{b}}_{{\rm{n - 1}}}}{\rm{. = }}{{\rm{x}}_{\rm{1}}}{{\rm{x}}_{\rm{2}}}{\rm{ \ldots \ldots }}{{\rm{x}}_{\rm{n}}}{\rm{ = }}{{\rm{y}}_{\rm{1}}}{{\rm{y}}_{\rm{2}}}{\rm{ = }}{{\rm{y}}_{\rm{n}}}\)

Asaresult,theassignmentisaone-to-onemapping.

Inaddition,therearen!permutationston!numbers,andtheassignmentusingcantorintegerisabisection.

Therefore, assignment using cantor integers between a set of permutations of \({\rm{\{ 1,2,3,}}........{\rm{n\} }}\) & the non-negative integers less than n! is a bisection.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free