Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the Cantor digits \({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots ,}}{{\rm{a}}_{{\rm{n - 1}}}}\) that correspond to these permutations.

a) 246531

b) 12345

c) 654321

Short Answer

Expert verified
  1. The cantor digits\({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{,}}{{\rm{a}}_{\rm{3}}}{\rm{,}}{{\rm{a}}_{\rm{4}}}{\rm{,}}{{\rm{a}}_{\rm{5}}}\)that correspond to 246531 are\({\rm{1,1,2,2,3}}\).

b. The cantor digits \({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{,}}{{\rm{a}}_{\rm{3}}}{\rm{,}}{{\rm{a}}_{\rm{4}}}\) that correspond to 12345 are\({\rm{0,0,0 \& 0}}\).

c. The cantor digits that correspond to 654321 are:

\(\begin{array}{l}{{\rm{a}}_{\rm{1}}}{\rm{ = 1}}\quad \\{{\rm{a}}_{\rm{4}}}{\rm{ = 4}}\\{{\rm{a}}_{\rm{2}}}{\rm{ = 2}}\quad \\{{\rm{a}}_{\rm{5}}}{\rm{ = 5}}\\{{\rm{a}}_{\rm{3}}}{\rm{ = 3}}\end{array}\)

Step by step solution

01

Definition of Concept

Functions: It is a expression, rule or law which defines a relationship between one variable and another variables.

02

Find the Cantor digits

(a)

Considering the given information:

The given permutation is 246531.

Using the following concept:

Cantor expansion of x consists of coefficients \({{\rm{a}}_{\rm{n}}}{\rm{, \ldots \ldots }}{\rm{.}}{{\rm{a}}_{\rm{1}}}\) such that.

\(0 \le {a_i} \le i{\rm{ And }}x = {a_n}(n!) + \ldots \ldots \ldots .. + {a_2}(2!) + {a_1}(1!)\)

\({{\rm{a}}_{\rm{1}}}{\rm{ = }}\)The number of integers less than 2 that follow \({\rm{2 = 1}}\)

\({{\rm{a}}_{\rm{2}}}{\rm{ = }}\)The number of integers less than 3 that follows \({\rm{3 = 1}}\)

\({{\rm{a}}_{\rm{3}}}{\rm{ = }}\)The number of integer less than 4 that follows \({\rm{4 = 2}}\)

\({{\rm{a}}_{\rm{4}}}{\rm{ = }}\)The number of integer less than 5 that follows \({\rm{5 = 2}}\)

\({{\rm{a}}_{\rm{5}}}{\rm{ = }}\)The number of integers less than 6 that follows \({\rm{6 = 3}}\)

So, the\({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{,}}{{\rm{a}}_{\rm{3}}}{\rm{,}}{{\rm{a}}_{\rm{4}}}{\rm{,}}{{\rm{a}}_{{\rm{6 - 1}}}}{\rm{ = 1,1,2,2,3}}\).

In addition, the Cantor equation is

\(\begin{array}{l}{\rm{ = }}{{\rm{a}}_{\rm{1}}}{\rm{(1!) + }}{{\rm{a}}_{\rm{2}}}{\rm{(2!) + }}{{\rm{a}}_{\rm{3}}}{\rm{(3!) + }}{{\rm{a}}_{\rm{4}}}{\rm{(4!) + }}{{\rm{a}}_{\rm{5}}}{\rm{(5!)}}\\{\rm{ = 1(1) + 1(2!) + 2(3!) + 2(4!) + (5!)}}\\{\rm{ = 12 + 12 + 48 + 360}}\\{\rm{ = 423}}\end{array}\)

Therefore, the cantor digits\({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{,}}{{\rm{a}}_{\rm{3}}}{\rm{,}}{{\rm{a}}_{\rm{4}}}{\rm{,}}{{\rm{a}}_{\rm{5}}}\)that correspond to 246531 are\({\rm{1,1,2,2,3}}\).

03

Find the Cantor digits

(b)

Considering the given information:

The given permutation is 12345.

Using the following concept:

Cantor expansion of x consists of coefficients \({{\rm{a}}_{\rm{n}}}{\rm{, \ldots \ldots }}{\rm{.}}{{\rm{a}}_{\rm{1}}}\) such that.

\(0 \le {a_i} \le i{\rm{ And }}x = {a_n}(n!) + \ldots \ldots \ldots .. + {a_2}(2!) + {a_1}(1!)\)

\({{\rm{a}}_{\rm{1}}}{\rm{ = }}\)The number of integers less than 2 that follow \({\rm{2 = 0}}\)

\({{\rm{a}}_{\rm{2}}}{\rm{ = }}\)The number of integers less than 3 that follows \({\rm{3 = 0}}\)

\({{\rm{a}}_{\rm{3}}}{\rm{ = }}\)The number of integer less than 4 that follows \({\rm{4 = 0}}\)

\({{\rm{a}}_{\rm{4}}}{\rm{ = }}\)The number of integer less than 5 that follows \({\rm{5 = 0}}\)

So, the cantor digits are\({\rm{0,0,0\& 0}}\).

In addition, the Cantor equation is

\(\begin{array}{l}{\rm{ = }}{{\rm{a}}_{\rm{1}}}{\rm{(1!) + }}{{\rm{a}}_{\rm{2}}}{\rm{(2!) + }}{{\rm{a}}_{\rm{3}}}{\rm{(3!) + }}{{\rm{a}}_{\rm{4}}}{\rm{(4!)}}\\{\rm{ = 0}}\end{array}\)

Therefore, the cantor digits \({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{,}}{{\rm{a}}_{\rm{3}}}{\rm{,}}{{\rm{a}}_{\rm{4}}}\) that correspond to 12345 are\({\rm{0,0,0 \& 0}}\).

04

Find the Cantor digits

(c)

Considering the given information:

The given permutation is 654321.

Using the following concept:

Cantor expansion of x consists of coefficients \({{\rm{a}}_{\rm{n}}}{\rm{, \ldots \ldots }}{\rm{.}}{{\rm{a}}_{\rm{1}}}\) such that.

\(0 \le {a_i} \le i{\rm{ And }}x = {a_n}(n!) + \ldots \ldots \ldots .. + {a_2}(2!) + {a_1}(1!)\)

\({{\rm{a}}_{\rm{1}}}{\rm{ = }}\)The number of integers less than 2 that follow \({\rm{2 = 1}}\)

\({{\rm{a}}_{\rm{2}}}{\rm{ = }}\)The number of integers less than 3 that follows \({\rm{3 = 2}}\)

\({{\rm{a}}_{\rm{3}}}{\rm{ = }}\)The number of integer less than 4 that follows \({\rm{4 = 3}}\)

\({{\rm{a}}_{\rm{4}}}{\rm{ = }}\)The number of integer less than 5 that follows \({\rm{5 = 4}}\)

\({{\rm{a}}_{\rm{5}}}{\rm{ = }}\)The number of integers less than 6 that follows \({\rm{6 = 5}}\)

So, the cantor digits are\({\rm{1,2,3,4,5}}\).

In addition, the Cantor equation is

\(\begin{array}{l}{\rm{ = }}{{\rm{a}}_{\rm{1}}}{\rm{(1!) + }}{{\rm{a}}_{\rm{2}}}{\rm{(2!) + }}{{\rm{a}}_{\rm{3}}}{\rm{(3!) + }}{{\rm{a}}_{\rm{4}}}{\rm{(4!) + }}{{\rm{a}}_{\rm{5}}}{\rm{(5!)}}\\{\rm{ = 1(1) + 2(2) + 3(6) + 4(24) + 5(120)}}\\{\rm{ = 719}}\end{array}\)

Therefore, the required cantor digits are:

\(\begin{array}{l}{{\rm{a}}_{\rm{1}}}{\rm{ = 1}}\quad \\{{\rm{a}}_{\rm{4}}}{\rm{ = 4}}\\{{\rm{a}}_{\rm{2}}}{\rm{ = 2}}\quad \\{{\rm{a}}_{\rm{5}}}{\rm{ = 5}}\\{{\rm{a}}_{\rm{3}}}{\rm{ = 3}}\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In how many ways can a set of two positive integers less than 100be chosen?

How can you find the number of bit strings of length ten that either begin with 101 or end with 010 ?

In this exercise we will count the number of paths in the\(xy\)plane between the origin \((0,0)\) and point\((m,n)\), where\(m\)and\(n\)are nonnegative integers, such that each path is made up of a series of steps, where each step is a move one unit to the right or a move one unit upward. (No moves to the left or downward are allowed.) Two such paths from\((0,0)\)to\((5,3)\)are illustrated here.

a) Show that each path of the type described can be represented by a bit string consisting of\(m\,\,0\)s and\(n\,\,1\)s, where a\(0\)represents a move one unit to the right and a\(1\)represents a move one unit upward.

b) Conclude from part (a) that there are \(\left( {\begin{array}{*{20}{c}}{m + n}\\n\end{array}} \right)\) paths of the desired type.

One hundred tickets, numbered \(1,2,3, \ldots ,100\), are sold to \(100\) different people for a drawing. Four different prizes are awarded, including a grand prize (a trip to Tahiti). How many ways are there to award the prizes if

a) there are no restrictions?

b) the person holding ticket \(47\) wins the grand prize?

c) the person holding ticket \(47\) wins one of the prizes?

d) the person holding ticket \(47\) does not win a prize?

e) the people holding tickets \(19\) and \(47\) both win prizes?

f) the people holding tickets \(19\;,\;47\)and \(73\) all win prizes?

g) the people holding tickets \(19\;,\;47\;,\;73\) and \(97\) all win prizes?

h) none of the people holding tickets \(19\;,\;47\;,\;73\) and \(97\) wins a prize?

i) the grand prize winner is a person holding ticket \(19\;,\;47\;,\;73\) or \(97\)?

j) the people holding tickets 19 and 47 win prizes, but the people holding tickets \(73\) and \(97\) do not win prizes?

a) What is the difference between an r-combination and an r-permutation of a set with n elements?

b) Derive an equation that relates the number of r-combinations and the number of r-permutations of a set with n elements.

c) How many ways are there to select six students from a class of 25 to serve on a committee?

d) How many ways are there to select six students from a class of 25 to hold six different executive positions on a committee?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free