Chapter 6: Q13E (page 413)
A group contains n men and n women. How many ways are there to arrange these people in a row if the men and women alternate?
Short Answer
There are groups the n men and n women.
Chapter 6: Q13E (page 413)
A group contains n men and n women. How many ways are there to arrange these people in a row if the men and women alternate?
There are groups the n men and n women.
All the tools & learning materials you need for study success - in one app.
Get started for freeHow many bit strings of length \({\rm{10}}\) over the alphabet \({\rm{\{ a,b,c\} }}\) have either exactly three \({\rm{a}}\)s or exactly four \({\rm{b}}\)s?
Give a formula for the coefficient ofin the expansion of, where kis an integer.
Show that if \(n\)and\(k\)are positive integers, then\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = (n + 1)\left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right)/k\). Use this identity to construct an inductive definition of the binomial coefficients.
One hundred tickets, numbered \(1,2,3, \ldots ,100\), are sold to \(100\) different people for a drawing. Four different prizes are awarded, including a grand prize (a trip to Tahiti). How many ways are there to award the prizes if
a) there are no restrictions?
b) the person holding ticket \(47\) wins the grand prize?
c) the person holding ticket \(47\) wins one of the prizes?
d) the person holding ticket \(47\) does not win a prize?
e) the people holding tickets \(19\) and \(47\) both win prizes?
f) the people holding tickets \(19\;,\;47\)and \(73\) all win prizes?
g) the people holding tickets \(19\;,\;47\;,\;73\) and \(97\) all win prizes?
h) none of the people holding tickets \(19\;,\;47\;,\;73\) and \(97\) wins a prize?
i) the grand prize winner is a person holding ticket \(19\;,\;47\;,\;73\) or \(97\)?
j) the people holding tickets 19 and 47 win prizes, but the people holding tickets \(73\) and \(97\) do not win prizes?
How many subsets with an odd number of elements does a set withelements have?
What do you think about this solution?
We value your feedback to improve our textbook solutions.