Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

13. A book publisher has 3000 copies of a discrete mathematics book. How many ways are there to store these books in their three warehouses if the copies of the book are indistinguishable?

Short Answer

Expert verified

There are 4.504.501different ways to store these books in their three warehouses if the copies of the book are indistinguishable

Step by step solution

01

Definitions

Definition of Permutation (Order is important)

No repetition allowed:P(n,r)=n!(nr)!

Repetition allowed:nT

Definition of combination (order is important)

No repetition allowed:C(n,r)=nr=n!r!(nr)!

Repetition allowed:C(n+r1,r)=n+r1r=(n+r1)!r!(n1)!

withn!=n(n-1).....21

02

Step 2: Solution

The order of the elements does not matters (since the books are indistinguishable), thus we need to use the definition of combination.

We are interested in selecting r = 3000 elements from a set with n = 3 elements.

Repetition of elements is allowed

C(n+r1,r)=C(3+30001,3000)C(3002,3000)=3002!3000!(30023000)!=3002!3000!2!=4,504,501

There are 4,504,501different ways to store these books in their three warehouses if the copies of the book are indistinguishable.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

a) Derive a formula for the number of permutations ofobjects of k different types, where there aren1 indistinguishable objects of type one,n2 indistinguishable objects of type two,..., andnk indistinguishable objects of type k.

b) How many ways are there to order the letters of the word INDISCREETNESS?

This procedure is used to break ties in games in the championship round of the World Cup soccer tournament. Each team selects five players in a prescribed order. Each of these players takes a penalty kick, with a player from the first team followed by a player from the second team and so on, following the order of players specified. If the score is still tied at the end of the 10 penalty kicks, this procedure is repeated. If the score is still tied after 20 penalty kicks, a sudden-death shootout occurs, with the first team scoring an unanswered goal victorious.

a) How many different scoring scenarios are possible if the game is settled in the first round of 10 penalty kicks, where the round ends once it is impossible for a team to equal the number of goals scored by the other team?

b) How many different scoring scenarios for the first and second groups of penalty kicks are possible if the game is settled in the second round of 10 penalty kicks?

c) How many scoring scenarios are possible for the full set of penalty kicks if the game is settled with no more than 10 total additional kicks after the two rounds of five kicks for each team?e11x2

Prove the identity\(\left( {\begin{array}{*{20}{l}}n\\r\end{array}} \right)\left( {\begin{array}{*{20}{l}}r\\k\end{array}} \right) = \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\left( {\begin{array}{*{20}{l}}{n - k}\\{r - k}\end{array}} \right)\), whenever\(n\),\(r\), and\(k\)are nonnegative integers with\(r \le n\)and\(k{\rm{ }} \le {\rm{ }}r\),

a) using a combinatorial argument.

b) using an argument based on the formula for the number of \(r\)-combinations of a set with\(n\)elements.

Show that (nk)2nfor all positive integers nand all integers kwith 0kn.

What is the row of Pascal's triangle containing the binomial coefficients(9k),0k9?

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free