Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Develop an algorithm for generating the r-permutations of a set of n elements.

Short Answer

Expert verified

The algorithm to generate the r - permutations of a set of n - elements is as follows.

Procedure r - permutation

\(\begin{array}{l}\left( {\begin{array}{*{20}{l}}{\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots \ldots }}..{{\rm{a}}_{\rm{r}}}} \right\}{\rm{ proper subset of \{ 1,2, \ldots \ldots }}{\rm{. \ldots \} }}}\\{{\rm{ not equal to with }}{{\rm{a}}_{\rm{1}}}{\rm{, < }}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots }}..{\rm{ < }}{{\rm{a}}_{\rm{r}}}}\end{array}} \right)\\{\rm{i = r}}\end{array}\)

While \({{\rm{a}}_{\rm{i}}}{\rm{ = n - r + i}}\)

\(\begin{array}{c}{\rm{i = i - 1}}\\{{\rm{a}}_{\rm{i}}}{\rm{ = }}{{\rm{a}}_{\rm{i}}}{\rm{ + 1}}\\{\rm{for J = i + 1 to r}}\\{{\rm{a}}_{\rm{J}}}{\rm{ = }}{{\rm{a}}_{\rm{i}}}{\rm{ + j - 1}}\\{\rm{J = r - 1}}\end{array}\)

While \({\rm{aJ > aJ + 1}}\)

\(\begin{array}{l}{\rm{J = J - 1}}\\{\rm{k = r}}\end{array}\)

While \({\rm{aJ > ax}}\)

\({\rm{k = k - 1}}\)

Interchange \({\rm{aJ}}\)& ax

\(\begin{array}{c}{\rm{m = r}}\\{\rm{s = J + 1}}\end{array}\)

while

\({\rm{s > m}}\)

Interchange am&aJ

\(\begin{array}{c}{\rm{m = m - 1}}\\{\rm{s = s + 1}}\end{array}\)

\(\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{ \ldots }}..{{\rm{a}}_{\rm{r}}}} \right\}\)is the r - permutation.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition of Concept

Permutations: A permutation of a set is a loosely defined arrangement of its members into a sequence or linear order, or, if the set is already ordered, a rearrangement of its elements, in mathematics. The act of changing the linear order of an ordered set is also referred to as "permutation."

Lexicographic order: The lexicographic or lexicographical order (also known as lexical order or dictionary order) in mathematics is a generalisation of the alphabetical order of dictionaries to sequences of ordered symbols or, more broadly, elements of a totally ordered set.

02

An algorithm for generating the r-permutations of a set of n elements.

Considering the given information:

A set of n – elements.

Using the following concept:

r-Permutation of set \({\rm{\{ 1,2, \ldots }}..{\rm{n\} }}\)is a proper subset \({{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots \ldots \ldots }}{{\rm{a}}_{\rm{r}}}\) with \({{\rm{a}}_{\rm{1}}}{\rm{ < }}{{\rm{a}}_{\rm{2}}}{\rm{ < \ldots \ldots \ldots < }}{{\rm{a}}_{\rm{r}}}..\)

Algorithm to generate the r - permutations of a set of n - elements is as follows.

Procedure r - permutation

\(\begin{array}{l}\left( {\begin{array}{*{20}{l}}{\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots \ldots }}..{{\rm{a}}_{\rm{r}}}} \right\}{\rm{ proper subset of \{ 1,2, \ldots \ldots }}{\rm{. \ldots \} }}}\\{{\rm{ not equal to with }}{{\rm{a}}_{\rm{1}}}{\rm{, < }}{{\rm{a}}_{\rm{2}}}{\rm{, \ldots }}..{\rm{ < }}{{\rm{a}}_{\rm{r}}}}\end{array}} \right)\\{\rm{i = r}}\end{array}\)

While \({{\rm{a}}_{\rm{i}}}{\rm{ = n - r + i}}\)

\(\begin{array}{c}{\rm{i = i - 1}}\\{{\rm{a}}_{\rm{i}}}{\rm{ = }}{{\rm{a}}_{\rm{i}}}{\rm{ + 1}}\\{\rm{for J = i + 1 to r}}\\{{\rm{a}}_{\rm{J}}}{\rm{ = }}{{\rm{a}}_{\rm{i}}}{\rm{ + j - 1}}\\{\rm{J = r - 1}}\end{array}\)

While \({\rm{aJ > aJ + 1}}\)

\(\begin{array}{l}{\rm{J = J - 1}}\\{\rm{k = r}}\end{array}\)

While \({\rm{aJ > ax}}\)

\({\rm{k = k - 1}}\)

Interchange \({\rm{aJ}}\)& ax

\(\begin{array}{c}{\rm{m = r}}\\{\rm{s = J + 1}}\end{array}\)

While

\({\rm{s > m}}\)

Interchange am&aJ

\(\begin{array}{c}{\rm{m = m - 1}}\\{\rm{s = s + 1}}\end{array}\)

\(\left\{ {{{\rm{a}}_{\rm{1}}}{\rm{,}}{{\rm{a}}_{\rm{2}}}{\rm{ \ldots }}..{{\rm{a}}_{\rm{r}}}} \right\}\)is the r - permutation.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free