The value for number of boxes is\[{\rm{k = 12}}\).
Since at least 6 objects per box is needed, the generalized pigeonhole principle then gives that –
\[\left[ {{{\rm{N}} \mathord{\left/
{\vphantom {{\rm{N}} {\rm{k}}}} \right.
\kern-\nulldelimiterspace} {\rm{k}}}} \right){\rm{ = 6}}\)
Substituting the value –
\[\left[ {{{\rm{N}} \mathord{\left/
{\vphantom {{\rm{N}} {{\rm{12}}}}} \right.
\kern-\nulldelimiterspace} {{\rm{12}}}}} \right){\rm{ = 6}}\)
The smallest possible value for\[{\rm{N}}\)is then\[{\rm{6 - 1 = 5}}\)times the multiple of the denominator increased by\[{\rm{1}}\).
\[\begin{array}{c}{\rm{N = 5}} \cdot {\rm{12 + 1}}\\{\rm{ = 60 + 1}}\\{\rm{ = 61}}\end{array}\)
Note that:\[\left[ {{{60} \mathord{\left/
{\vphantom {{60} {{\rm{12}}}}} \right.
\kern-\nulldelimiterspace} {{\rm{12}}}}} \right){\rm{ = 5}}\)and\[\left[ {{{{\rm{61}}} \mathord{\left/
{\vphantom {{{\rm{61}}} {{\rm{12}}}}} \right.
\kern-\nulldelimiterspace} {{\rm{12}}}}} \right)\left[ {{\rm{5 + 1/12}}} \right){\rm{ = 6}}\). Thus, at least\[{\rm{61}}\)people are needed to guarantee that there are at least\[{\rm{6}}\)with the same sign.
Therefore, the result is obtained as \[{\rm{61}}\) people.