Chapter 6: Counting
Q22E
How many permutations of the letters \(ABCDEFGH\) contain
a) the string \(ED\)?
b) the string \(CDE\)?
c) the strings \(BA\) and \(FGH\)?
d) the strings \(AB\;,\;DE\) and \(GH\)?
e) the strings \(CAB\) and \(BED\)?
f) the strings \(BCA\) and \(ABF\)?
Q22E
How many ways are there to distribute 12 indistinguishable balls into six distinguishable bins?
Q22E
Prove the identity\(\left( {\begin{array}{*{20}{l}}n\\r\end{array}} \right)\left( {\begin{array}{*{20}{l}}r\\k\end{array}} \right) = \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\left( {\begin{array}{*{20}{l}}{n - k}\\{r - k}\end{array}} \right)\), whenever\(n\),\(r\), and\(k\)are nonnegative integers with\(r \le n\)and\(k{\rm{ }} \le {\rm{ }}r\),
a) using a combinatorial argument.
b) using an argument based on the formula for the number of \(r\)-combinations of a set with\(n\)elements.
Q22SE
Find n if \({\bf{a}}){\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right){\rm{ }} = {\rm{ }}{\bf{110}}.{\rm{ }}{\bf{b}}){\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{n}}} \right){\rm{ }} = {\rm{ }}{\bf{5040}}.{\rm{ }}{\bf{c}}){\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{4}}} \right){\rm{ }} = {\rm{ }}{\bf{12P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right)\).
Q23E
How many ways are there for eight men and five women to stand in a line so that no two women stand next to each other? (Hint: First position the men and then consider possible positions for the women.)
Q23E
How many positive integers between \(100\) and \(999\) inclusive are divisible by \(3\)and by \(4\) ?
Q23E
Show that if \(n\)and\(k\)are positive integers, then\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = (n + 1)\left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right)/k\). Use this identity to construct an inductive definition of the binomial coefficients.
Q23E
How many ways are there to distribute 12 distinguishable objects into six distinguishable boxes so that two objects are placed in each box?
Q23SE
Find n if a) \({\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right){\rm{ }} = {\rm{ }}{\bf{45}}.{\rm{ }}{\bf{b}}){\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{3}}} \right){\rm{ }} = {\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right).{\rm{ }}{\bf{c}}){\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{5}}} \right){\rm{ }} = {\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right)\)
Q24E
How many ways are there for 10 women and six men to stand in a line so that no two men stand next to each other? (Hint: First position the women and then consider possible positions for the men.)