Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Q22E

Page 414

How many permutations of the letters \(ABCDEFGH\) contain

a) the string \(ED\)?

b) the string \(CDE\)?

c) the strings \(BA\) and \(FGH\)?

d) the strings \(AB\;,\;DE\) and \(GH\)?

e) the strings \(CAB\) and \(BED\)?

f) the strings \(BCA\) and \(ABF\)?

Q22E

Page 432

How many ways are there to distribute 12 indistinguishable balls into six distinguishable bins?

Q22E

Page 422

Prove the identity\(\left( {\begin{array}{*{20}{l}}n\\r\end{array}} \right)\left( {\begin{array}{*{20}{l}}r\\k\end{array}} \right) = \left( {\begin{array}{*{20}{l}}n\\k\end{array}} \right)\left( {\begin{array}{*{20}{l}}{n - k}\\{r - k}\end{array}} \right)\), whenever\(n\),\(r\), and\(k\)are nonnegative integers with\(r \le n\)and\(k{\rm{ }} \le {\rm{ }}r\),

a) using a combinatorial argument.

b) using an argument based on the formula for the number of \(r\)-combinations of a set with\(n\)elements.

Q22SE

Page 440

Find n if \({\bf{a}}){\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right){\rm{ }} = {\rm{ }}{\bf{110}}.{\rm{ }}{\bf{b}}){\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{n}}} \right){\rm{ }} = {\rm{ }}{\bf{5040}}.{\rm{ }}{\bf{c}}){\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{4}}} \right){\rm{ }} = {\rm{ }}{\bf{12P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right)\).

Q23E

Page 414

How many ways are there for eight men and five women to stand in a line so that no two women stand next to each other? (Hint: First position the men and then consider possible positions for the women.)

Q23E

Page 396

How many positive integers between \(100\) and \(999\) inclusive are divisible by \(3\)and by \(4\) ?

Q23E

Page 422

Show that if \(n\)and\(k\)are positive integers, then\(\left( {\begin{array}{*{20}{c}}{n + 1}\\k\end{array}} \right) = (n + 1)\left( {\begin{array}{*{20}{c}}n\\{k - 1}\end{array}} \right)/k\). Use this identity to construct an inductive definition of the binomial coefficients.

Q23E

Page 432

How many ways are there to distribute 12 distinguishable objects into six distinguishable boxes so that two objects are placed in each box?

Q23SE

Page 440

Find n if a) \({\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right){\rm{ }} = {\rm{ }}{\bf{45}}.{\rm{ }}{\bf{b}}){\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{3}}} \right){\rm{ }} = {\rm{ }}{\bf{P}}{\rm{ }}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right).{\rm{ }}{\bf{c}}){\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{5}}} \right){\rm{ }} = {\rm{ }}{\bf{C}}\left( {{\bf{n}},{\rm{ }}{\bf{2}}} \right)\)

Q24E

Page 414

How many ways are there for 10 women and six men to stand in a line so that no two men stand next to each other? (Hint: First position the women and then consider possible positions for the men.)

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks