Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a \(3\)- cube \({{\bf{Q}}_{\bf{3}}}\) to represent each of the Boolean functions in Exercise \(6\) by displaying a black circle at each vertex that corresponds to a \(3\)-tuple where this function has the value \(1\) .

Short Answer

Expert verified

a) Draw a black circle about the values \(000,010,100,110\) in \({{\bf{Q}}_{\bf{3}}}\).

b) Draw a black circle about the values \(001, 010, 011, 101\) in \({{\bf{Q}}_{\bf{3}}}\).

c) Draw a black circle about the values \(000, 001, 010, 011, 100, 101\) and 110 in \({{\bf{Q}}_{\bf{3}}}\).

d) Draw a black circle about the values 000 and 101 in \({{\bf{Q}}_{\bf{3}}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \(\bar 0 = 1\) and \(\bar 1 = 0\)

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product \( \cdot \) or AND is 1 if both terms are 1.

An n-dimensional hypercube \({Q_n}(n \ge 1)\) has bit strings of length n as vertices. There is an edge between two vertices, if the corresponding strings differ by exactly 1 bit.

02

(a) Using the definition of complement

\(F(x,y,z) = \bar z\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Therefore, the table of the given Boolean function \(F(x,y,z) = \bar z\) is

\(\begin{array}{*{20}{l}}x&y&z&{\bar z}\\0&0&0&1\\0&0&1&0\\0&1&0&1\\0&1&1&0\\1&0&0&1\\1&0&1&0\\1&1&0&1\\1&1&1&0\end{array}\)

In the table, you obtain a 1 in the last column for \(\left( {x, y, z} \right) = \left( {0,0,0} \right),\left( {0,1,0} \right),\left( {1,0,0} \right),\left( {1,1,0} \right)\). You need to draw a black circle about the values \(000,010,100,110\) in \({{\bf{Q}}_{\bf{3}}}\).

Therefore, draw a black circle about the values \(000,010,100,110\) in \({{\bf{Q}}_{\bf{3}}}\)

03

(b) Using the Boolean product and sum

\({\bf{F(x,y,z) = \bar xy + \bar yz}}\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(\bar xy\) represents \(\bar x \cdot y\) and \(\bar yz\) represents \(\bar y \cdot z\)

Therefore, the table of the given Boolean function \({\bf{F(x,y,z) = \bar xy + \bar yz}}\) is

\(\begin{array}{*{20}{c}}x&y&z&{\overline x }&{\overline y }&{\overline x \cdot y}&{\overline y \cdot z}&{\overline {x \cdot } y + \overline y \cdot z}\\0&0&0&1&1&0&0&0\\0&0&1&1&1&0&1&1\\0&1&0&1&0&1&0&1\\0&1&1&1&0&1&0&1\\1&0&0&0&1&0&0&0\\1&0&1&0&1&0&1&1\\1&1&0&0&0&0&0&0\\1&1&1&0&0&0&0&0\end{array}\)

In the table, you obtain a 1 in the last column for \(\left( {x, y, z} \right) = \left( {0,0,1} \right),\left( {0,1,0} \right),\left( {0,1,1} \right),\left( {1,0,1} \right)\). You need to draw a black circle about the values \(001, 010, 011, 101\) in \({{\bf{Q}}_{\bf{3}}}\).

Therefore, draw a black circle about the values \(001, 010, 011, 101\) in \({{\bf{Q}}_{\bf{3}}}\).

04

(c) Using the Boolean product and sum

\(F(x,y,z) = x\bar yz + \overline {(xyz)} \)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(xyz\) represents \(x \cdot y \cdot z\) and \(x\bar y\) represents \(x \cdot \bar y\)

Therefore, the table of the given Boolean function \(F(x,y,z) = x\bar yz + \overline {(xyz)} \) is

\(\begin{array}{*{20}{c}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z}}}&{{\bf{x}} \cdot {\bf{y}}}&{{\bf{x}} \cdot {\bf{y}} \cdot {\bf{z}}}&{\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z + }}\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}\)

In the table, you obtain a 1 in the last column for \(\left( {x, y, z} \right) = \left( {0,0,0} \right),\left( {0,0,1} \right),\left( {0,1,0} \right),\left( {0,1,1} \right),\left( {1,0,0} \right),\left( {1,0,1} \right),\left( {1,1,0} \right)\). You need to draw a black circle about the values \(000, 001, 010, 011, 100, 101\) and 110 in \({{\bf{Q}}_{\bf{3}}}\).

Therefore, draw a black circle about the values \(000, 001, 010, 011, 100, 101\) and 110 in \({{\bf{Q}}_{\bf{3}}}\).

05

(d) Using the Boolean product and sum

\({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(yz\) represents \(y \cdot z\) and \(\bar y\bar z\) represents \(\bar y \cdot \bar z\)

Therefore, the table of the given Boolean function \({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\) is

\(\begin{array}{*{20}{c}}x&{ y}&{ z}&{ \bar x}&{ \bar y}&{ \bar z}&{ x \cdot z}&{ \bar x \cdot \bar z}&{ x \cdot z + \bar x \cdot \bar z}&{ \bar y \cdot (x \cdot z + \bar x \cdot \bar z)}\\0&0&0&1&1&1&0&1&1&1\\0&0&1&1&1&0&0&0&0&0\\0&1&0&1&0&1&0&1&1&0\\0&1&1&1&0&0&0&0&0&0\\1&0&0&0&1&1&0&0&0&0\\1&0&1&0&1&0&1&0&1&1\\1&1&0&0&0&1&0&0&0&0\\1&1&1&0&0&0&1&0&1&0\end{array}\)

In the table, you obtain a 1 in the last column for \(\left( {x, y, z} \right) = \left( {0,0,0} \right),\left( {1,0,1} \right)\). You need to draw a black circle about the values 000 and 101 in \({{\bf{Q}}_{\bf{3}}}\).

Therefore, draw a black circle about the values 000 and 101 in \({{\bf{Q}}_{\bf{3}}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free