Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Show that if \(F\) and \(G\) are Boolean functions of degree \(n\), then

\(\begin{array}{l}a)F \le F{\bf{ + }}G\\b)FG \le F\end{array}\)

Short Answer

Expert verified

\(a)\)It gets \(F \le F{\bf{ + }}G\) by the definition of Boolean functions.

\(b)\) It gets \(FG \le F\) by the definition of Boolean functions.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

Let \({\bf{B = }}\left\{ {{\bf{0,1}}} \right\}\). Then \({{\bf{B}}^{\bf{n}}}{\bf{ = }}\left\{ {\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\mid {{\bf{x}}_{\bf{i}}} \in {\bf{B}}} \right.\)for \(\left. {1 \le {\bf{i}} \le {\bf{n}}} \right\}\) is the set of all possible \({\bf{n}}\)-tuples of \({\bf{0's}}\) and \({\bf{1's}}\). The variable \({\bf{x}}\) is called a Boolean variable if it assumes values only from \({\bf{B}}\), that is, if its only possible values are \(0\) and \(1\). A function from \({{\bf{B}}^{\bf{n}}}\) to \({\bf{B}}\) is called a Boolean function and it has degree \({\bf{n}}\).

02

Using the Boolean function

(a)

At every point in the domain, it is certainly the case that if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\), then \({\bf{(F + G)}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ + G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1 + G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\), no matter what value \(G\) has at that point.

Therefore, by definition \(F \le F{\bf{ + }}G\).

03

Using contrapositive method

(b)

This is dual to the first part.

At every point in the domain, it is certainly the case that if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 0}}\), then \({\bf{(FG)}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 0}} \cdot {\bf{G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 0}}\).

No matter what value \(G\) has at that point.

The contrapositive of this statement is that if \({\bf{(FG)}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\), then \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\).

Therefore, by definition \(FG \le F\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free