Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a \({\bf{3 - }}\)cube \({{\bf{Q}}_{\bf{3}}}\) to represent each of the Boolean functions in Exercise \(5\) by displaying a black circle at each vertex that corresponds to a \({\bf{3 - }}\)tuple where this function has the value \({\bf{1}}\).

Short Answer

Expert verified

a) You only need to place a black circle at the vertices 010 and 011 in \({{\bf{Q}}_{\bf{3}}}\)

b) You need to place a black circle at the vertices \(011,100,101,110\) and 111 in \({{\bf{Q}}_{\bf{3}}}\)

c) You need to place a black circle at the vertices \(000,001,010,011,011,100,101\) and 110 in \({{\bf{Q}}_{\bf{3}}}\)

d) You need to place a black circle at the vertices 100 and 111 in \({{\bf{Q}}_{\bf{3}}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \(\bar 0 = 1\) and \(\bar 1 = 0\)

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product \( \cdot \) or AND is 1 if both terms are 1.

An n-dimensional hypercube \({Q_n}(n \ge 1)\) has bit strings of length n as vertices. There is an edge between two vertices, if the corresponding strings differ by exactly 1 bit.

02

(a) Using the definition of complement

\(F(x,y,z) = \bar xy\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(\bar xy\) represents \(\bar x \cdot y\)

\(\begin{array}{*{20}{c}}x&y&z&{\bar x}&{\bar x \cdot y}\\0&0&0&1&0\\0&0&1&1&0\\0&1&0&1&1\\0&1&1&1&1\\1&0&0&0&0\\1&0&1&0&0\\1&1&0&0&0\\1&1&1&0&0\end{array}\)

You only obtain a 1 in the last column for \((x, y, z) = (0,1,0)\) and \((x, y, z) = (0,1,1)\).

Therefore, you only need to place a black circle at the vertices 010 and 011 in \({{\bf{Q}}_{\bf{3}}}\)

03

(b) Using the Boolean product and sum

\(F(x,y,z) = x + yz\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(yz\) represents \(y \cdot z\)

\(\begin{array}{*{20}{r}}x&y&z&{y \cdot z}&{x{\bf{ + }}(y \cdot z)}\\0&0&0&0&0\\0&0&1&0&0\\0&1&0&0&0\\0&1&1&1&1\\1&0&0&0&1\\1&0&1&0&1\\1&1&0&0&1\\1&1&1&1&1\end{array}\)

You only obtain a 1 in the last column for \((x, y, z) = (0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)\).

Therefore, you need to place a black circle at the vertices \(011,100,101,110\) and 111 in \({{\bf{Q}}_{\bf{3}}}\)

04

(c) Using the Boolean product and sum

\(F(x,y,z) = x\bar y + \overline {(xyz)} \)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(\overline {(xyz)} \) represents \(\overline {(x \cdot y \cdot z)} \) and \(x\bar y\) represents \(x \cdot \bar y\)

\(\begin{array}{*{20}{c}}x&y&z&{\bar y}&{x \cdot \bar y}&{x \cdot y}&{x \cdot y \cdot z}&{\overline {(x \cdot y \cdot z)} }&{x \cdot \bar y{\bf{ + }}\overline {(x \cdot y \cdot z)} }\\0&0&0&1&0&0&0&1&1\\0&0&1&1&0&0&0&1&1\\0&1&0&0&0&0&0&1&1\\0&1&1&0&0&0&0&1&1\\1&0&0&1&1&0&0&1&1\\1&0&1&1&1&0&0&1&1\\1&1&0&0&0&1&0&1&1\\1&1&1&0&0&1&1&0&0\end{array}\)

You obtain a 1 in the last column for all combinations of the three variables except \((x, y, z) = (1,1,1)\).

Therefore, you need to place a black circle at the vertices \(000,001,010,011,011,100,101\) and 110 in \({{\bf{Q}}_{\bf{3}}}\)

05

(d) Using the Boolean product and sum

\(F(x,y,z) = x(yz + \bar y\bar z)\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(yz\) represents \(y \cdot z\) and \(\bar y\bar z\) represents \(\bar y \cdot \bar z\)

\(\begin{array}{*{20}{c}}x&y&z&{\bar y}&{\bar z}&{y \cdot z}&{\bar y \cdot \bar z}&{y \cdot z{\bf{ + }}\bar y \cdot \bar z}&{x \cdot (y \cdot z{\bf{ + }}\bar y \cdot \bar z)}\\0&0&0&1&1&0&1&1&0\\0&0&1&1&0&0&0&0&0\\0&1&0&0&1&0&0&0&0\\0&1&1&0&0&1&0&1&0\\1&0&0&1&1&0&1&1&1\\1&0&1&1&0&0&0&0&0\\1&1&0&0&1&0&0&0&0\\1&1&1&0&0&1&0&1&1\end{array}\)

You obtain a 1 in the last column for \((x, y, z) = (1,0,0)\) and \((x, y, z) = (1,1,1)\).

Therefore, you need to place a black circle at the vertices 100 and 111 in \({{\bf{Q}}_{\bf{3}}}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free