Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find a Boolean sum containing either x or \(\overline {\bf{x}} \), either y or \(\overline {\bf{y}} \), and either z or \(\overline {\bf{z}} \) that has the value 0 if and only if

a) \({\bf{x = }}\,{\bf{y = 1,}}\,{\bf{z = 0}}\)

b) \({\bf{x = }}\,{\bf{y = }}\,{\bf{z = 0}}\)

c) \({\bf{x = }}\,{\bf{z = 0,}}\,{\bf{y = 1}}\)

Short Answer

Expert verified

(a) The sum is\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z}}\).

(b)The sum is\({\bf{x + y + z}}\).

(c) The sum is\({\bf{x + }}\overline {\bf{y}} {\bf{ + z}}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition:

The complements of an elements \(\overline {\bf{0}} {\bf{ = 1}}\) and \(\overline {\bf{1}} {\bf{ = 0}}\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

02

Find the result for \({\bf{x = }}\,{\bf{y = 1,}}\,{\bf{z = 0}}\).(a)

Here \({\bf{x = 1,}}\,{\bf{y = 1,}}\,{\bf{z = 0}}\).

If a Boolean variable is 0, the complement of the Boolean variable is 1.

\(\begin{array}{l}\overline {\bf{x}} {\bf{ = 0}}\\\overline {\bf{y}} {\bf{ = 0}}\\{\bf{z = 0}}\end{array}\)

The Boolean sum of the Boolean variable is 0 if all Boolean variable is 0.

\(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z = 0}}\)

Thus, the Boolean product is \(\overline {\bf{x}} {\bf{ + }}\overline {\bf{y}} {\bf{ + z}}\).

03

Determine the result of \({\bf{x = }}\,{\bf{y = }}\,{\bf{z = 0}}\).(b)

Here, \({\bf{x = 0,}}\,{\bf{y = 1,}}\,{\bf{z = 0}}\).

If a Boolean variable is 0, then the complement of the Boolean variable is 1.

\(\begin{array}{l}{\bf{x = 0}}\\\overline {\bf{y}} {\bf{ = 0}}\\{\bf{z = 0}}\end{array}\)

The Boolean product of a Boolean variable is 0 if all Boolean variable is 0.

\({\bf{x + y + z = 0}}\).

Thus, the Boolean product is \({\bf{x + y + z}}\).

04

Evaluate the result for \({\bf{x = z = 0,}}\,{\bf{y = 1}}\).(c)

Here, \({\bf{x = 0,}}\,{\bf{y = 1,}}\,{\bf{z = 1}}\).

If a Boolean variable is 0, then the complement of the Boolean variable is 1.

\(\begin{array}{l}\overline {\bf{x}} {\bf{ = 1}}\\{\bf{y = 1}}\\{\bf{z = 1}}\end{array}\)

The Boolean product of Boolean variable is 0 if all Boolean variable is 0.

\({\bf{x + }}\overline {\bf{y}} {\bf{ + z = 0}}\)

Thus, the Boolean sum is \({\bf{x + }}\overline {\bf{y}} {\bf{ + z}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find a minimal sum-of-products expansion, given the \(K{\bf{ - }}\)map shown with don't care conditions indicated with\(d\)โ€™s.

Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).

\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)

Construct circuits from inverters, AND gates, and ORgates to produce these outputs.

\(\begin{array}{l}{\bf{a)}}\overline {\bf{x}} {\bf{ + y}}\\{\bf{b)}}\overline {{\bf{(x + y)}}} {\bf{x}}\\{\bf{c)xyz + }}\overline {\bf{x}} \overline {\bf{y}} \overline {\bf{z}} \\{\bf{d)}}\overline {{\bf{(}}\overline {\bf{x}} {\bf{ + z)(y + }}\overline {\bf{z}} {\bf{)}}} \end{array}\)

Construct a circuit that compares the two-bit integers\({{\bf{(}}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{o}}}{\bf{)}}_{\bf{2}}}\)and\({{\bf{(}}{{\bf{y}}_{\bf{1}}}{{\bf{y}}_{\bf{o}}}{\bf{)}}_{\bf{2}}}\), returning an output of 1 when the first of these numbers is larger and an output of 0 otherwise.

Construct a circuit for a full subtractor using AND gates, OR gates, and inverters. A full subtractor has two bits and a borrow as input, and produces as output a difference bit and a borrow.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free