Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Design a circuit that implements majority voting for five individuals.

Short Answer

Expert verified

The result is \(abc + abd + abe + acd + ace + ade + bcd + bcd + bde + cde\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Defining of gates.

There are three types of gates.

It is also called NOT gate.

02

Construct a circuit.

A circuit that implements five inputs requires. Let the inputs are a, b, c, d ,e.

The outputs will need to be 1 when at least three of the inputs is a 1.Thus the outputs will be 1 when abc, abd ,abe, acd, ace, ade, bcd,bce, bde, or cde is equal to 1. Or equivalently when \(abc + abd + abe + acd + ace + ade + bcd + bcd + bde + cde\) I equal to 1

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that \({\bf{x\bar y + y\bar z + \bar xz = \bar xy + \bar yz + x\bar z}}\).

Let \({\bf{x}}\) and \({\bf{y}}\) belong to \(\left\{ {{\bf{0,1}}} \right\}\). Does it necessarily follow that \({\bf{x = y}}\) if there exists a value \({\bf{z}}\) in \(\left\{ {{\bf{0,1}}} \right\}\) such that,

\(\begin{array}{l}{\bf{a) xz = yz?}}\\{\bf{b) x + z = y + z?}}\\{\bf{c) x}} \oplus {\bf{z = y}} \oplus {\bf{z?}}\\{\bf{d) x}} \downarrow {\bf{z = y}} \downarrow {\bf{z?}}\\{\bf{e) x}}|{\bf{z = y}}|z{\bf{?}}\end{array}\)

A Boolean function \({\bf{F}}\) is called self-dual if and only if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \).

Show that \({\bf{F}}\left( {{\bf{x, y, z}}} \right){\bf{ = x y + x z + y z}}\) has the value \(1\) if and only if at least two of the variables \({\bf{x, y}}\), and \({\bf{z}}\) have the value \(1\) .

Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).

\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)

Draw the Hasse diagram for the poset consisting of the set of the \({\bf{16}}\)Boolean functions of degree two (shown in Table \({\bf{3}}\) of Section \({\bf{12}}{\bf{.1}}\)) with the partial ordering \( \le \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free