Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Determine whether \({\bf{F}} \le {\bf{G}}\) or \({\bf{G}} \le {\bf{F}}\) for the following pairs of functions.

\(\begin{array}{c}{\bf{a) F(x,y) = x,G(x,y) = x + y}}\\{\bf{b) F(x,y) = x + y,G(x,y) = xy}}\\{\bf{c) F(x,y) = \bar x,G(x,y) = x + y}}\end{array}\)

Short Answer

Expert verified

\({\bf{(a)}}\) It gets \({\bf{F}} \le {\bf{G}}\) for the given function \({\bf{F(x,y) = x,G(x,y) = x + y}}\)

\({\bf{(b)}}\) It gets \({\bf{G}} \le {\bf{F}}\) for the given function \({\bf{F(x,y) = x + y,G(x,y) = xy}}\)

\({\bf{(c)}}\) \({\bf{F}} \le {\bf{G}}\) and \({\bf{G}} \le {\bf{F}}\) are both not the case for the given function \({\bf{F(x,y) = \bar x,G(x,y) = x + y}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \({\bf{OR}}\) is \({\bf{1}}\) if either term is \({\bf{1}}\).

The Boolean product \( \bullet \) or \({\bf{AND}}\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).

\({\bf{F}} \le {\bf{G}}\) if \({\bf{G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\) whenever \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\).

02

Check whether the given satisfies \({\bf{F}} \le {\bf{G}}\) or \({\bf{G}} \le {\bf{F}}\)

(a)

\(\begin{array}{*{20}{l}}{{\bf{F}}\left( {{\bf{x, y}}} \right){\bf{ = x}}}\\{{\bf{G}}\left( {{\bf{x, y}}} \right){\bf{ = x + y}}}\end{array}\)

Let create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).

\(\begin{array}{*{20}{c}}{\bf{x}}&{{\bf{ y}}}&{{\bf{ F(x,y) = x}}}&{{\bf{ G(x,y) = x + y}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)

Now note that \({\bf{G}}\left( {{\bf{x, y}}} \right){\bf{ = 1}}\) whenever \({\bf{F}}\left( {{\bf{x, y}}} \right){\bf{ = 1}}\) in the table.

Therefore, it gives \({\bf{F}} \le {\bf{G}}\).

03

Check whether the given satisfies \({\bf{F}} \le {\bf{G}}\) or \({\bf{G}} \le {\bf{F}}\)

(b)

\(\begin{array}{*{20}{l}}{{\bf{F}}\left( {{\bf{x, y}}} \right){\bf{ = x + y }}}\\{{\bf{G}}\left( {{\bf{x, y}}} \right){\bf{ = x y}}}\end{array}\)

Let create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).

\(\begin{array}{*{20}{r}}{\bf{x}}&{{\bf{ y}}}&{{\bf{ F(x,y) = x + y}}}&{{\bf{ G(x,y) = xy}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)

Now note that \({\bf{F}}\left( {{\bf{x, y}}} \right){\bf{ = 1}}\) whenever \({\bf{G}}\left( {{\bf{x, y}}} \right){\bf{ = 1}}\) in the table.

Hence, it gives \({\bf{G}} \le {\bf{F}}\).

04

Check whether the given satisfies \({\bf{F}} \le {\bf{G}}\) or \({\bf{G}} \le {\bf{F}}\)

(c)

\(\begin{array}{c}{\bf{F(x,y) = \bar x }}\\{\bf{G(x,y) = x + y}}\end{array}\)

Let create a table for all possible values of \({\bf{x, y}}\) and \({\bf{z}}\).

\(\begin{array}{*{20}{c}}{\bf{x}}&{{\bf{ y}}}&{{\bf{ F(x,y) = \bar x}}}&{{\bf{ G(x,y) = x + y}}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}\end{array}\)

Now note that \({\bf{F}}\left( {{\bf{x, y}}} \right){\bf{ = 1}}\) and \({\bf{G}}\left( {{\bf{x, y}}} \right){\bf{ = }}0\) for \(\left( {{\bf{x, y}}} \right){\bf{ = }}\left( {0{\bf{,}}0} \right)\), while \({\bf{F}}\left( {{\bf{x, y}}} \right){\bf{ = }}0\) and \({\bf{G}}\left( {{\bf{x, y}}} \right){\bf{ = 1}}\) for \(\left( {{\bf{x, y}}} \right){\bf{ = }}\left( {1{\bf{,}}0} \right)\).

So, \({\bf{F}} \le {\bf{G}}\) and \({\bf{G}} \le {\bf{F}}\) are both not the case.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Find the values, if any, of the Boolean variable \({\bf{x}}\) that satisfy these equations.

\({\bf{a)}}\)\({\bf{x}} \cdot {\bf{1 = 0}}\)

\({\bf{b)}}\)\({\bf{x + x = 0}}\)

\({\bf{c)}}\)\({\bf{x}} \cdot {\bf{1 = x}}\)

\({\bf{d)}}\)\({\bf{x}} \cdot {\bf{\bar x = 1}}\)

Find the sum-of-products expansions of the Boolean function \({\bf{F}}\left( {{\bf{x, y, z}}} \right)\) that equals 1 if and only if

a) \({\bf{x = 0}}\)

b) \({\bf{xy = 0}}\)

c) \({\bf{x + y = 0}}\)

d) \({\bf{xyz = 0}}\)

Show that you obtain the absorption laws for propositions (in Table \({\bf{6}}\) in Section \({\bf{1}}{\bf{.3}}\)) when you transform the absorption laws for Boolean algebra in Table 6 into logical equivalences.

Let \({\bf{x}}\) and \({\bf{y}}\) belong to \(\left\{ {{\bf{0,1}}} \right\}\). Does it necessarily follow that \({\bf{x = y}}\) if there exists a value \({\bf{z}}\) in \(\left\{ {{\bf{0,1}}} \right\}\) such that,

\(\begin{array}{l}{\bf{a) xz = yz?}}\\{\bf{b) x + z = y + z?}}\\{\bf{c) x}} \oplus {\bf{z = y}} \oplus {\bf{z?}}\\{\bf{d) x}} \downarrow {\bf{z = y}} \downarrow {\bf{z?}}\\{\bf{e) x}}|{\bf{z = y}}|z{\bf{?}}\end{array}\)

A Boolean function \({\bf{F}}\) is called self-dual if and only if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \).

Find the sum-of-products expansions represented by each of these \(K{\bf{ - }}\)maps.

\(({\bf{a)}}\)

\({\bf{(b)}}\)

\({\bf{(c)}}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free