Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a table to express the values of each of these Boolean functions.

\(\begin{array}{l}{\bf{a) F(x,y,z) = \bar z}}\\{\bf{b) F(x,y,z) = \bar xy + \bar yz}}\\{\bf{c) F(x,y,z) = x\bar yz + }}\overline {{\bf{(xyz)}}} \\{\bf{d) F(x,y,z) = \bar y(xz + \bar x\bar z)}}\end{array}\)

Short Answer

Expert verified

a) The table of the given Boolean function \(F(x,y,z) = \bar z\) is

\(\begin{array}{*{20}{l}}x&y&z&{\bar z}\\0&0&0&1\\0&0&1&0\\0&1&0&1\\0&1&1&0\\1&0&0&1\\1&0&1&0\\1&1&0&1\\1&1&1&0\end{array}\)

b) The table of the given Boolean function \({\bf{F(x,y,z) = \bar xy + \bar yz}}\) is

\(\begin{array}{*{20}{c}}x&y&z&{\overline x }&{\overline y }&{\overline x \cdot y}&{\overline y \cdot z}&{\overline {x \cdot } y + \overline y \cdot z}\\0&0&0&1&1&0&0&0\\0&0&1&1&1&0&1&1\\0&1&0&1&0&1&0&1\\0&1&1&1&0&1&0&1\\1&0&0&0&1&0&0&0\\1&0&1&0&1&0&1&1\\1&1&0&0&0&0&0&0\\1&1&1&0&0&0&0&0\end{array}\)

c) The table of the given Boolean function \(F(x,y,z) = x\bar yz + \overline {(xyz)} \) is

\(\begin{array}{*{20}{c}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z}}}&{{\bf{x}} \cdot {\bf{y}}}&{{\bf{x}} \cdot {\bf{y}} \cdot {\bf{z}}}&{\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z + }}\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}\)

d) The table of the given Boolean function \({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\) is

\(\begin{array}{*{20}{c}}x&{ y}&{ z}&{ \bar x}&{ \bar y}&{ \bar z}&{ x \cdot z}&{ \bar x \cdot \bar z}&{ x \cdot z + \bar x \cdot \bar z}&{ \bar y \cdot (x \cdot z + \bar x \cdot \bar z)}\\0&0&0&1&1&1&0&1&1&1\\0&0&1&1&1&0&0&0&0&0\\0&1&0&1&0&1&0&1&1&0\\0&1&1&1&0&0&0&0&0&0\\1&0&0&0&1&1&0&0&0&0\\1&0&1&0&1&0&1&0&1&1\\1&1&0&0&0&1&0&0&0&0\\1&1&1&0&0&0&1&0&1&0\end{array}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = }}0\)

The Boolean sum + or\(OR\)is 1 if either term is 1.

The Boolean product \( \cdot \) or \(AND\) is 1 if both terms are 1.

02

(a) Using the definition of complement

\(F(x,y,z) = \bar z\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Therefore, the table of the given Boolean function \(F(x,y,z) = \bar z\) is

\(\begin{array}{*{20}{l}}x&y&z&{\bar z}\\0&0&0&1\\0&0&1&0\\0&1&0&1\\0&1&1&0\\1&0&0&1\\1&0&1&0\\1&1&0&1\\1&1&1&0\end{array}\)

03

(b) Using Boolean product and sum

\({\bf{F(x,y,z) = \bar xy + \bar yz}}\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(\bar xy\) represents \(\bar x \cdot y\) and \(\bar yz\) represents \(\bar y \cdot z\)

Therefore, the table of the given Boolean function \({\bf{F(x,y,z) = \bar xy + \bar yz}}\) is

\(\begin{array}{*{20}{c}}x&y&z&{\overline x }&{\overline y }&{\overline x \cdot y}&{\overline y \cdot z}&{\overline {x \cdot } y + \overline y \cdot z}\\0&0&0&1&1&0&0&0\\0&0&1&1&1&0&1&1\\0&1&0&1&0&1&0&1\\0&1&1&1&0&1&0&1\\1&0&0&0&1&0&0&0\\1&0&1&0&1&0&1&1\\1&1&0&0&0&0&0&0\\1&1&1&0&0&0&0&0\end{array}\)

04

(c) Using Boolean product and sum

\(F(x,y,z) = x\bar yz + \overline {(xyz)} \)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(xyz\) represents \(x \cdot y \cdot z\) and \(x\bar y\) represents \(x \cdot \bar y\)

Therefore, the table of the given Boolean function \(F(x,y,z) = x\bar yz + \overline {(xyz)} \) is

\(\begin{array}{*{20}{c}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}}}&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z}}}&{{\bf{x}} \cdot {\bf{y}}}&{{\bf{x}} \cdot {\bf{y}} \cdot {\bf{z}}}&{\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }&{{\bf{x}} \cdot {\bf{\bar y}} \cdot {\bf{z + }}\overline {{\bf{(x}} \cdot {\bf{y}} \cdot {\bf{z)}}} }\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\end{array}\)

05

(d) Using Boolean product and sum

\({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(yz\) represents \(y \cdot z\) and \(\bar y\bar z\) represents \(\bar y \cdot \bar z\)

Therefore, the table of the given Boolean function \({\bf{F(x,y,z) = \bar y(xz + \bar x\bar z)}}\) is

\(\begin{array}{*{20}{c}}x&{ y}&{ z}&{ \bar x}&{ \bar y}&{ \bar z}&{ x \cdot z}&{ \bar x \cdot \bar z}&{ x \cdot z + \bar x \cdot \bar z}&{ \bar y \cdot (x \cdot z + \bar x \cdot \bar z)}\\0&0&0&1&1&1&0&1&1&1\\0&0&1&1&1&0&0&0&0&0\\0&1&0&1&0&1&0&1&1&0\\0&1&1&1&0&0&0&0&0&0\\1&0&0&0&1&1&0&0&0&0\\1&0&1&0&1&0&1&0&1&1\\1&1&0&0&0&1&0&0&0&0\\1&1&1&0&0&0&1&0&1&0\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free