Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the sum-of-products expansion of the Boolean function F (\({{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{,}}{{\bf{x}}_{\bf{3}}}{\bf{,}}{{\bf{x}}_{\bf{4}}}{\bf{,}}{{\bf{x}}_{\bf{5}}}\)) that has the value 1 if and only if three or more of the variables \({{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{,}}{{\bf{x}}_{\bf{3}}}{\bf{,}}{{\bf{x}}_{\bf{4}}}{\bf{,}}{{\bf{x}}_{\bf{5}}}\) have the value 1.

Short Answer

Expert verified

The sum of products is\(\begin{array}{l}{\bf{F}}\,{\bf{(x,y,z) = }}\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}\\\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}\\{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + x + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\end{array}\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complements of an elements\(\overline {\bf{0}} {\bf{ = 1}}\)and\(\overline {\bf{1}} {\bf{ = 0}}\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

02

Find the sum of products.

Here \({\bf{F}}\,\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{,}}{{\bf{x}}_{\bf{3}}}{\bf{,}}{{\bf{x}}_{\bf{4}}}{\bf{,}}{{\bf{x}}_{\bf{5}}}} \right){\bf{ = 1}}\) if and only if an odd number of Boolean variables are equal to1.

\({{\bf{x}}_{\bf{1}}}\)

\({{\bf{x}}_{\bf{2}}}\)

\({{\bf{x}}_{\bf{3}}}\)

\({{\bf{x}}_{\bf{4}}}\)

\({{\bf{x}}_{\bf{5}}}\)

F(\({{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{,}}{{\bf{x}}_{\bf{3}}}{\bf{,}}{{\bf{x}}_{\bf{4}}}{\bf{,}}{{\bf{x}}_{\bf{5}}}\))

Sum-of-product terms

0

0

0

0

0

0

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

0

0

0

0

1

0

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

0

0

0

1

0

0

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} \)

0

0

0

1

1

0

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

0

0

1

0

0

0

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

0

0

1

0

1

0

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

0

0

1

1

0

0

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} \)

0

0

1

1

1

1

\(\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

0

1

0

0

0

0

\(\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

0

1

0

0

1

0

\(\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

0

1

0

1

1

1

\(\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

0

1

1

0

0

0

\(\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

0

1

1

0

1

1

\(\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

0

1

1

1

0

1

\(\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} \)

0

1

1

1

1

1

\(\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

1

0

0

0

0

0

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

1

0

0

0

1

0

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

1

0

0

1

0

0

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} \)

1

0

0

1

1

1

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

1

0

1

0

0

0

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

1

0

1

0

1

1

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

1

0

1

1

0

1

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} \)

1

0

1

1

1

1

\({{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

1

1

0

0

0

0

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

1

1

0

0

1

1

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

1

1

0

1

0

1

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} \)

1

1

0

1

1

1

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

1

1

1

0

0

1

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} \)

1

1

1

0

1

1

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}\)

1

1

1

1

0

1

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} \)

1

1

1

1

1

1

\({{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\)

The sum of product expansion of G then contains a term for every row that has 1 in the last column. A term is the product of the three variables.

Therefore, the sum of products expansions is \(\begin{array}{l}{\bf{F}}\,{\bf{(x,y,z) = }}\overline {{{\bf{x}}_{\bf{1}}}} \overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}\\\overline {{{\bf{x}}_{\bf{1}}}} {{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} \overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}{{\bf{x}}_{\bf{1}}}\overline {{{\bf{x}}_{\bf{2}}}} {{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} \overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}\\{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}\overline {{{\bf{x}}_{\bf{3}}}} {{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} \overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}\overline {{{\bf{x}}_{\bf{4}}}} {{\bf{x}}_{\bf{5}}}{\bf{ + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}\overline {{{\bf{x}}_{\bf{5}}}} {\bf{ + x + }}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{2}}}{{\bf{x}}_{\bf{3}}}{{\bf{x}}_{\bf{4}}}{{\bf{x}}_{\bf{5}}}\end{array}\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free