Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many Boolean functions of degree \(n\) are self-dual\(?\)

We define the relation \( \le \) on the set of Boolean functions of degree \(n\) so that \(F \le G\), where \(F\) and \(G\) are Boolean functions if and only if \({\bf{G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\) whenever \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\).

Short Answer

Expert verified

There are \({{\bf{2}}^{{{\bf{2}}^{{\bf{n - 1}}}}}}\) self-dual Boolean functions of degree \(n\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \(\bar 0{\bf{ = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \(OR\) is \({\bf{1}}\) if either term is \({\bf{1}}\).

The Boolean product \( \cdot \) or \(AND\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).

A Boolean function is self-dual iff \(F\left( {{x_1},{x_2}, \ldots ,{x_n}} \right){\bf{ = }}\overline {F\left( {{{\bar x}_1},{{\bar x}_2}, \ldots ,{{\bar x}_n}} \right)} \).

02

Using the Boolean function

Let \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\) be a Boolean function.

Let us first consider \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\). It has \(n{\bf{ - 1}}\) variables. Since each \({x_i}\) can take on two values (\({\bf{0}}\) or \({\bf{1}}\)), there are \(\underbrace {2 \cdot 2 \cdot \ldots \cdot 2}_{{\bf{n - }}1{\rm{ }}{\bf{repetitions}}{\rm{ }}}{\bf{ = }}{{\bf{2}}^{{\bf{n - 1}}}}\) possible ways to assign values to each of the \(n{\bf{ - 1}}\) variables.

Next, there are \(2\) possible images for each of the \({2^{n - 1}}\) combinations of values of the \(n{\bf{ - 1}}\) variables (that is, the image is either \({\bf{0}}\) or \({\bf{1}}\)) and thus there are \(\underbrace {2 \cdot 2 \cdot \ldots \cdot 2}_{{2^{n - 1}} repetitions{\rm{ }}} = {2^{{2^{n - 1}}}}\) possible ways, so there are \({{\bf{2}}^{{{\bf{2}}^{{\bf{n - 1}}}}}}\). Boolean functions \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\).

Next, it can determine \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\) using the self-dual property;

\(\begin{array}{c}{\bf{F}}\left( {{\bf{0,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{\bf{\bar 0,}}{{{\bf{\bar x}}}_{\bf{2}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \\{\bf{ = }}\overline {{\bf{F}}\left( {{\bf{1,}}{{{\bf{\bar x}}}_{\bf{2}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \end{array}\)

Therefore, there are \({{\bf{2}}^{{{\bf{2}}^{{\bf{n - 1}}}}}}\)self-dual Boolean functions \({\bf{F}}\left( {{\bf{1,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free