Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many Boolean functions of degree \(n\) are self-dual\(?\)

We define the relation \( \le \) on the set of Boolean functions of degree \(n\) so that \(F \le G\), where \(F\) and \(G\) are Boolean functions if and only if \({\bf{G}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\) whenever \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = 1}}\).

Short Answer

Expert verified

There are \({{\bf{2}}^{{{\bf{2}}^{{\bf{n - 1}}}}}}\) self-dual Boolean functions of degree \(n\).

Step by step solution

01

Definition

The complement of an element: \(\bar 0{\bf{ = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \(OR\) is \({\bf{1}}\) if either term is \({\bf{1}}\).

The Boolean product \( \cdot \) or \(AND\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).

A Boolean function is self-dual iff \(F\left( {{x_1},{x_2}, \ldots ,{x_n}} \right){\bf{ = }}\overline {F\left( {{{\bar x}_1},{{\bar x}_2}, \ldots ,{{\bar x}_n}} \right)} \).

02

Using the Boolean function

Let \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\) be a Boolean function.

Let us first consider \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\). It has \(n{\bf{ - 1}}\) variables. Since each \({x_i}\) can take on two values (\({\bf{0}}\) or \({\bf{1}}\)), there are \(\underbrace {2 \cdot 2 \cdot \ldots \cdot 2}_{{\bf{n - }}1{\rm{ }}{\bf{repetitions}}{\rm{ }}}{\bf{ = }}{{\bf{2}}^{{\bf{n - 1}}}}\) possible ways to assign values to each of the \(n{\bf{ - 1}}\) variables.

Next, there are \(2\) possible images for each of the \({2^{n - 1}}\) combinations of values of the \(n{\bf{ - 1}}\) variables (that is, the image is either \({\bf{0}}\) or \({\bf{1}}\)) and thus there are \(\underbrace {2 \cdot 2 \cdot \ldots \cdot 2}_{{2^{n - 1}} repetitions{\rm{ }}} = {2^{{2^{n - 1}}}}\) possible ways, so there are \({{\bf{2}}^{{{\bf{2}}^{{\bf{n - 1}}}}}}\). Boolean functions \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\).

Next, it can determine \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\) using the self-dual property;

\(\begin{array}{c}{\bf{F}}\left( {{\bf{0,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{\bf{\bar 0,}}{{{\bf{\bar x}}}_{\bf{2}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \\{\bf{ = }}\overline {{\bf{F}}\left( {{\bf{1,}}{{{\bf{\bar x}}}_{\bf{2}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \end{array}\)

Therefore, there are \({{\bf{2}}^{{{\bf{2}}^{{\bf{n - 1}}}}}}\)self-dual Boolean functions \({\bf{F}}\left( {{\bf{1,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free