Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use a table to express the values of each of these Boolean functions.

\(\begin{array}{l}(a)F(x,y,z) = \bar xy\\(b)F(x,y,z) = x + yz\\(c)F(x,y,z) = x\bar y + \overline {(xyz)} \\(d)F(x,y,z) = x(yz + \bar y\bar z)\end{array}\)

Short Answer

Expert verified

a) A table of Boolean expression \(F(x,y,z) = \bar xy\) is

\(\begin{array}{*{20}{c}}x&y&z&{\bar x}&{\bar x \cdot y}\\0&0&0&1&0\\0&0&1&1&0\\0&1&0&1&1\\0&1&1&1&1\\1&0&0&0&0\\1&0&1&0&0\\1&1&0&0&0\\1&1&1&0&0\end{array}\)

b) A table of Boolean expression \(F(x,y,z) = x + yz\) is

\(\begin{array}{*{20}{r}}x&y&z&{y \cdot z}&{x{\bf{ + }}(y \cdot z)}\\0&0&0&0&0\\0&0&1&0&0\\0&1&0&0&0\\0&1&1&1&1\\1&0&0&0&1\\1&0&1&0&1\\1&1&0&0&1\\1&1&1&1&1\end{array}\)

c) A table of Boolean expression \(F(x,y,z) = x\bar y + \overline {(xyz)} \) is

\(\begin{array}{*{20}{c}}x&y&z&{\bar y}&{x \cdot \bar y}&{x \cdot y}&{x \cdot y \cdot z}&{\overline {(x \cdot y \cdot z)} }&{x \cdot \bar y{\bf{ + }}\overline {(x \cdot y \cdot z)} }\\0&0&0&1&0&0&0&1&1\\0&0&1&1&0&0&0&1&1\\0&1&0&0&0&0&0&1&1\\0&1&1&0&0&0&0&1&1\\1&0&0&1&1&0&0&1&1\\1&0&1&1&1&0&0&1&1\\1&1&0&0&0&1&0&1&1\\1&1&1&0&0&1&1&0&0\end{array}\)

d) A table of Boolean expression \(F(x,y,z) = x(yz + \bar y\bar z)\) is

\(\begin{array}{*{20}{c}}x&y&z&{\bar y}&{\bar z}&{y \cdot z}&{\bar y \cdot \bar z}&{y \cdot z{\bf{ + }}\bar y \cdot \bar z}&{x \cdot (y \cdot z{\bf{ + }}\bar y \cdot \bar z)}\\0&0&0&1&1&0&1&1&0\\0&0&1&1&0&0&0&0&0\\0&1&0&0&1&0&0&0&0\\0&1&1&0&0&1&0&1&0\\1&0&0&1&1&0&1&1&1\\1&0&1&1&0&0&0&0&0\\1&1&0&0&1&0&0&0&0\\1&1&1&0&0&1&0&1&1\end{array}\)

Step by step solution

01

Definition

The complement of an element: \({\bf{\bar 0 = 1}}\) and \({\bf{\bar 1 = }}0\)

The Boolean sum + or\(OR\)is 1 if either term is 1.

The Boolean product \( \cdot \) or \(AND\) is 1 if both terms are 1.

02

(a) Using the Boolean product

\(F(x,y,z) = \bar xy\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(\bar xy\) represents \(\bar x \cdot y\)

\(\begin{array}{*{20}{c}}x&y&z&{\bar x}&{\bar x \cdot y}\\0&0&0&1&0\\0&0&1&1&0\\0&1&0&1&1\\0&1&1&1&1\\1&0&0&0&0\\1&0&1&0&0\\1&1&0&0&0\\1&1&1&0&0\end{array}\)

03

(b) Using the Boolean product and sum

\(F(x,y,z) = x + yz\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(yz\) represents \(y \cdot z\)

\(\begin{array}{*{20}{r}}x&y&z&{y \cdot z}&{x{\bf{ + }}(y \cdot z)}\\0&0&0&0&0\\0&0&1&0&0\\0&1&0&0&0\\0&1&1&1&1\\1&0&0&0&1\\1&0&1&0&1\\1&1&0&0&1\\1&1&1&1&1\end{array}\)

04

(c) Using the Boolean product and sum

\(F(x,y,z) = x\bar y + \overline {(xyz)} \)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(\overline {(xyz)} \) represents \(\overline {(x \cdot y \cdot z)} \) and \(x\bar y\) represents \(x \cdot \bar y\)

\(\begin{array}{*{20}{c}}x&y&z&{\bar y}&{x \cdot \bar y}&{x \cdot y}&{x \cdot y \cdot z}&{\overline {(x \cdot y \cdot z)} }&{x \cdot \bar y{\bf{ + }}\overline {(x \cdot y \cdot z)} }\\0&0&0&1&0&0&0&1&1\\0&0&1&1&0&0&0&1&1\\0&1&0&0&0&0&0&1&1\\0&1&1&0&0&0&0&1&1\\1&0&0&1&1&0&0&1&1\\1&0&1&1&1&0&0&1&1\\1&1&0&0&0&1&0&1&1\\1&1&1&0&0&1&1&0&0\end{array}\)

05

(d) Using the Boolean product and sum

\(F(x,y,z) = x(yz + \bar y\bar z)\)

The function has three variables x, y and z. Each of these variables can take on the value of 0 or 1.

Note: \(yz\) represents \(y \cdot z\) and \(\bar y\bar z\) represents \(\bar y \cdot \bar z\)

\(\begin{array}{*{20}{c}}x&y&z&{\bar y}&{\bar z}&{y \cdot z}&{\bar y \cdot \bar z}&{y \cdot z{\bf{ + }}\bar y \cdot \bar z}&{x \cdot (y \cdot z{\bf{ + }}\bar y \cdot \bar z)}\\0&0&0&1&1&0&1&1&0\\0&0&1&1&0&0&0&0&0\\0&1&0&0&1&0&0&0&0\\0&1&1&0&0&1&0&1&0\\1&0&0&1&1&0&1&1&1\\1&0&1&1&0&0&0&0&0\\1&1&0&0&1&0&0&0&0\\1&1&1&0&0&1&0&1&1\end{array}\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

\({\bf{a)}}\)Draw a \(K{\bf{ - }}\)map for a function in three variables. Put a \(1\) in the cell that represents \(\bar xy\bar z\).

\({\bf{b)}}\)Which minterms are represented by cells adjacent to this cell\(?\)

\(a)\)Explain how \(K{\bf{ - }}\)maps can be used to simplify sum-of-products expansions in three Boolean variables.

\(b)\)Use a \(K{\bf{ - }}\)map to simplify the sum-of-products expansion \({\bf{xyz + x\bar yz + x\bar y\bar z + \bar xyz + \bar x\bar y\bar z}}\).

Construct a circuit that computes the product of the two-bitintegers \({{\bf{(}}{{\bf{x}}_{\bf{1}}}{{\bf{x}}_{\bf{o}}}{\bf{)}}_{\bf{2}}}\)and\({{\bf{(}}{{\bf{y}}_{\bf{1}}}{{\bf{y}}_{\bf{o}}}{\bf{)}}_{\bf{2}}}\).The circuit should have four output bits for the bits in the product. Two gates that are often used in circuits are NAND and NOR gates. When NAND or NOR gates are used to represent circuits, no other types of gates are needed. The notation for these gates is as follows:

Show that \(x \odot y{\bf{ = }}\overline {(x \oplus y)} \).

Which rows and which columns of a \(4{\bf{ \ast }}16\) map for Boolean functions in six variables using the Gray codes \({\bf{1111}},{\bf{1110}},{\bf{1010}},{\bf{1011}},{\bf{1001}},{\bf{1000}},{\bf{0000}},{\bf{0001}},{\bf{0011}},{\bf{0010}},{\bf{0110}},{\bf{0111}},{\bf{0101}},{\bf{0100}},{\bf{1100}},{\bf{1101}}\) to label the columns and \({\bf{11}},{\bf{10}},{\bf{00}},{\bf{01}}\) to label the rows need to be considered adjacent so that cells that represent min-terms that differ in exactly one literal are considered adjacent\(?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free