Here \({\bf{F}}\left( {{\bf{w, x, y, z}}} \right){\bf{ = 1}}\) if and only if an odd number of Boolean variables are equal to 1.
W | X | Y | Z | \({\bf{F}}\left( {{\bf{w, x, y, z}}} \right)\) | Sum-of-product terms |
0 | 0 | 0 | 0 | 0 | \(\overline {\bf{w}} \overline {\bf{x}} \overline {\bf{y}} \overline {\bf{z}} \) |
0 | 0 | 0 | 1 | 1 | \(\overline {\bf{w}} \overline {\bf{x}} \overline {\bf{y}} {\bf{z}}\) |
0 | 0 | 1 | 0 | 1 | \(\overline {\bf{w}} \overline {\bf{x}} {\bf{y}}\overline {\bf{z}} \) |
0 | 0 | 1 | 1 | 0 | \(\overline {\bf{w}} \overline {\bf{x}} {\bf{yz}}\) |
0 | 1 | 0 | 0 | 1 | \(\overline {\bf{w}} {\bf{x}}\overline {\bf{y}} \overline {\bf{z}} \) |
0 | 1 | 0 | 1 | 0 | \(\overline {\bf{w}} {\bf{x}}\overline {\bf{y}} {\bf{z}}\) |
0 | 1 | 1 | 0 | 0 | \(\overline {\bf{w}} {\bf{xy}}\overline {\bf{z}} \) |
0 | 1 | 1 | 1 | 1 | \(\overline {\bf{w}} {\bf{xyz}}\) |
1 | 0 | 0 | 0 | 1 | \({\bf{w}}\overline {\bf{x}} \overline {\bf{y}} \overline {\bf{z}} \) |
1 | 0 | 0 | 1 | 0 | \({\bf{w}}\overline {\bf{x}} {\bf{y}}\overline {\bf{z}} \) |
1 | 0 | 1 | 0 | 0 | \({\bf{w}}\overline {\bf{x}} {\bf{yz}}\) |
1 | 0 | 1 | 1 | 1 | \({\bf{wx}}\overline {\bf{y}} \overline {\bf{z}} \) |
1 | 1 | 0 | 0 | 0 | \({\bf{wx}}\overline {\bf{y}} {\bf{z}}\) |
1 | 1 | 0 | 1 | 1 | \({\bf{wxy}}\overline {\bf{z}} \) |
1 | 1 | 1 | 1 | 0 | \({\bf{wxyz}}\) |
1 | 1 | 1 | 1 | 0 | \({\bf{wxyz}}\) |
The sum of product expansion of G then contains a term for every row that has 1 in the last column. A term is the product of the three variables.
Therefore, the sum of products expansions is\({\bf{F(w,x,y,z) = }}\overline {\bf{w}} \overline {\bf{x}} \overline {\bf{y}} {\bf{z + }}\overline {\bf{w}} {\bf{x}}\overline {\bf{y}} \overline {\bf{z}} {\bf{ + }}\overline {\bf{w}} \overline {\bf{x}} {\bf{y}}\overline {\bf{z}} {\bf{ + }}\overline {\bf{w}} {\bf{xyz + w}}\overline {\bf{x}} \overline {\bf{y}} \overline {\bf{z}} {\bf{ + wx}}\overline {\bf{y}} \overline {\bf{z}} {\bf{ + wxy}}\overline {\bf{z}} \).