Chapter 12: Q4E (page 841)
Use a \(K{\bf{ - }}\)map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions of the Boolean variables \({\bf{x}}\) and \({\bf{y}}\).
\(\begin{array}{l}{\bf{a)\bar xy + \bar x\bar y}}\\{\bf{b)xy + x\bar y}}\\{\bf{c)xy + x\bar y + \bar xy + \bar x\bar y}}\end{array}\)
Short Answer
\((a)\)The minimum expansion for the sum-of-product is \(\bar x\)
\((b)\)The minimum expansion for the sum-of-product is \(x\)
\((c)\) The minimum expansion for the sum-of-product is \(1\)