Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

use the laws in Definition \(1\) to show that the stated properties hold in every Boolean algebra.

Show that in a Boolean algebra, the modular properties hold. That is, show that \({\bf{x}} \wedge {\bf{(y}} \vee {\bf{(x}} \wedge {\bf{z)) = (x}} \wedge {\bf{y)}} \vee {\bf{(x}} \wedge {\bf{z)}}\) and \({\bf{x}} \vee {\bf{(y}} \wedge {\bf{(x}} \vee {\bf{z)) = (x}} \vee {\bf{y)}} \wedge {\bf{(x}} \vee {\bf{z)}}\).

Short Answer

Expert verified

The given modular properties \(x \wedge \left( {y \vee \left( {x \wedge z} \right)} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\),\(x \vee \left( {y \wedge \left( {x \vee z} \right)} \right) = \left( {x \vee y} \right) \wedge \left( {x \vee \left( {x \vee z} \right)} \right)\) are hold.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

Associative laws

\(\begin{array}{c}x \vee \left( {y \vee z} \right) = \left( {x \vee y} \right) \vee z\\x \wedge \left( {y \wedge z} \right) = \left( {x \wedge y} \right) \wedge z\end{array}\)

Distributive laws

\(\begin{array}{c}x \vee \left( {y \wedge z} \right) = \left( {x \vee y} \right) \wedge \left( {x \vee z} \right)\\x \wedge \left( {y \vee z} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\end{array}\)

Idempotent laws

\(\begin{array}{c}x \vee x = x\\x \wedge x = x\end{array}\)

02

Using the associative, distributive and identity laws

To proof: \(x \wedge \left( {y \vee \left( {x \wedge z} \right)} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\)

PROOF

Using the Associative, distributive and identity laws

To proof: \(x \wedge \left( {y \vee \left( {x \wedge z} \right)} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\)

\(\begin{array}{c}x \wedge \left( {y \vee \left( {x \wedge z} \right)} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge \left( {x \wedge z} \right)} \right)\\ = \left( {x \wedge y} \right) \vee \left( {\left( {x \wedge x} \right) \wedge z} \right)\\ = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\end{array}\)

Therefore, it gets\({\bf{x}} \wedge {\bf{(y}} \vee {\bf{(x}} \wedge {\bf{z)) = (x}} \wedge {\bf{y)}} \vee {\bf{(x}} \wedge {\bf{z)}}\)

03

Using the associative, distributive and identity laws

To proof: \(x \vee \left( {y \wedge \left( {x \vee z} \right)} \right) = \left( {x \vee y} \right) \wedge \left( {x \vee z} \right)\)

PROOF

\(\begin{array}{c} = \left( {x \vee y} \right) \wedge \left( {x \vee \left( {x \vee z} \right)} \right)\\ = \left( {x \vee y} \right) \wedge \left( {\left( {x \vee x} \right) \vee z} \right)\\ = \left( {x \vee y} \right) \wedge \left( {x \vee z} \right)\end{array}\)

Therefore, it gets\({\bf{x}} \vee {\bf{(y}} \wedge {\bf{(x}} \vee {\bf{z)) = (x}} \vee {\bf{y)}} \wedge {\bf{(x}} \vee {\bf{(x}} \vee {\bf{z))}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free