Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Which of these functions are self-dual?

\(\begin{array}{l}\left. {\bf{a}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = x\\\left. {\bf{b}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar x\bar y}}\\\left. {\bf{c}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{x + y}}\\\left. {\bf{d}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar xy}}\end{array}\)

Short Answer

Expert verified

a) The given function is self-dual.

b) The given function is not a self-dual.

c) The given function is not a self-dual.

d) The given function is self-dual.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element:\({\bf{\bar 0 = 1}}\)and\({\bf{\bar 1 = 0}}\)

The Boolean sum\({\bf{ + }}\)or\(OR\)is\({\bf{1}}\)if either term is\({\bf{1}}\).

The Boolean product\( \cdot \)or\(AND\)is\({\bf{1}}\)if both terms are\({\bf{1}}\).

If, then a Boolean function is dual and only if\({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{,}}{{{\bf{\bar x}}}_{\bf{2}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \)

Law of the double complement

\({\mathbf{\bar x = x}}\)

Identity laws

\(\begin{array}{c}{\bf{x + 0 = x}}\\x \cdot 1{\bf{ = }}x\end{array}\)

Idempotent laws

\(\begin{array}{c}x{\bf{ + x = }}x\\x \cdot x{\bf{ = }}x\end{array}\)

Commutative laws:

\(\begin{array}{c}p \vee q \equiv q \vee p\\p \wedge q \equiv q \wedge p\end{array}\)

De Morgan's laws

\(\begin{array}{c}\overline {\left( {{\bf{xy}}} \right)} {\bf{ = \bar x + \bar y}}\\\overline {\left( {{\bf{x + y}}} \right)} {\bf{ = \bar x}}\bar y\end{array}\)

Zero property

\(x{\bf{\bar x = 0}}\)

Unit property

\({\bf{x + \bar x = 1}}\)

02

Check whether the function is self-dual or not

\(F\left( {x,y} \right) = x\)

Using the law of the double complement

\(\begin{aligned}\overline {F\left( {\bar x,\bar y} \right)} &= \bar x\\ &= x\\ &= F\left( {x,y} \right)\end{aligned}\)

Hence, by the definition of self-dual, \(F\) is self-dual.

\(\begin{array}{c}F\left( {x,y} \right) = xy + \bar x \bar y\\\overline {F\left( {\bar x,\bar y} \right)} = \overline {\bar x \bar y + \bar x\bar y} \end{array}\)

03

Check whether the function is self-dual or not

Using the Law of the double complement

\( = \bar x\bar y + xy\)

Using the De Morgan's law

\(\begin{aligned} &= \bar x\bar y\overline {xy} \\ &= \left( {\bar x + \bar y} \right)\left( {\bar x + \bar y} \right)\end{aligned}\)

Using the Law of the double complement

\( = \left( {x + y} \right)\left( {\bar x + \bar y} \right)\)

Using the Distributive law

\( = x\bar x + \bar xy + x\bar y + y\bar y\)

04

Check whether the function is self-dual or not

Using the Zero property

\( = 0 + \bar xy + x\bar y + 0\)

Using the Identity law

\(\begin{array}{c} = \bar xy + x\bar y\\ \ne F\left( {x,y} \right)\end{array}\)

So, by the definition of self-dual, \(F\) is NOT self-dual.

05

Check whether the function is self-dual or not

Using the De Morgan's law

\(\begin{array}{c}F\left( {x,y} \right) = x + y\\\overline {F\left( {\bar x,\bar y} \right)} = \overline {\bar x + \bar y} \\ = \bar x\bar y\\ = xy\\ \ne F\left( {x,y} \right)\end{array}\)

Accordingly, by the definition of self-dual, \(F\) is NOT self-dual.

06

Check whether the function is self-dual or not

\(F\left( {x,y} \right) = xy + \bar xy\)

Using the law of the double complement, De Morgan's law, Distributive law, Zero property, Idempotent law, Commutative law, Unit property, Identity law

\(\begin{aligned}\overline {F\left( {\bar x,\bar y} \right)} &= \bar x\bar y + \bar x\bar y\\ &= \overline {\bar x\bar y + x\bar y} \\ &= \bar x\bar y\overline {x\bar y} \\ &= \left( {\bar x + \bar y} \right)\left( {\bar x + \bar y} \right)\end{aligned}\)

\(\begin{aligned} &= \left( {x + y} \right)\left( {\bar x + y} \right)\\ &= x\bar x + \bar xy + xy + yy\\ &= 0 + \bar xy + xy + yy\\ &= \bar xy + xy + y\end{aligned}\)


07

Check whether the function is self-dual or not

Using the law of the double complement, De Morgan's law, Distributive law, Zero property, Idempotent law, Commutative law, Unit property, Identity law

\(\begin{aligned}\overline {F\left( {\bar x,\bar y} \right)} &= \left( {\bar x + x} \right)y + y\\ &= \left( {x + \bar x} \right)y + y\\ &= 1 \cdot y + y\\ &= y + y\end{aligned}\)

\(\begin{aligned} &= y\\ &= 1 \cdot y\\ &= \left( {x + \bar x} \right) \cdot y\\ &= xy + \bar xy\\ &= F\left( {x,y} \right)\end{aligned}\)

Therefore, by the definition of self-dual, \(F\) is self-dual.


One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free