Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the sum-of-products expansions of these Booleanfunctions.

a) \({\bf{F}}\left( {{\bf{x, y, z}}} \right){\bf{ = x + y + z}}\)

b) \({\bf{F}}\left( {{\bf{x, y, z}}} \right){\bf{ = }}\left( {{\bf{x + z}}} \right){\bf{y}}\)

c) \({\bf{F}}\left( {{\bf{x, y, z}}} \right){\bf{ = x}}\)

d) \({\bf{F}}\left( {{\bf{x, y, z}}} \right){\bf{ = x}}\overline {\bf{y}} \)

Short Answer

Expert verified

The sum of products expansions are

(a) The sum of products is\(xyz + x\overline y z + xy\overline z + x\overline y \overline z + \overline x yz + \overline x y\overline z + \overline x \overline y z\).

(b) The sum of product is \(xyz + xy\overline z + \overline x yz\).

(c) The sum of product is \(xyz + x\overline y z + xy\overline z + x\overline y \overline z \).

(d) The sum of product is \(x\overline y z + x\overline y \overline z \).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complements of an elements\(\overline {\bf{0}} {\bf{ = 1}}\)and\(\overline {\bf{1}} {\bf{ = 0}}\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

02

(a) Find the result.

Here \(F\left( {x,{\rm{ }}y,{\rm{ }}z} \right) = x + y + z\)

To solve this use Boolean identities.

\(\begin{aligned}F\left( {x,y} \right) &=x + y + z\\ &= x.1 + y.1 + z.1\\ &= x.1.1 + y.1.1 + z.1.1\\ &= x\left( {y + \overline y } \right)\left( {z + \overline z } \right) + y\left( {x + \overline x } \right)\left( {z + \overline z } \right) + z\left( {x + \overline x } \right)\left( {y + \overline y } \right)\\&= \left( {xy + x\overline y } \right)\left( {z + \overline z } \right) + \left( {yx +y\overline x } \right)\left( {z + \overline z } \right) + \left( {zx + z\overline x } \right)\left( {y + \overline y } \right)\\&= xyz + x\overline y z + xy\overline z + x\overline y \overline z + yxz + y\overline x z + yx\overline z + y\overline x \overline z + zxy + z\overline x y + zx\overline y + z\overline x \overline y \\ &= xyz + x\overline y z + xy\overline z + x\overline y \overline z + xyz + \overline x yz + xy\overline z + \overline x y\overline z + xyz + \overline x yz + x\overline y z + \overline x \overline y z\\ &= xyz + x\overline y z + xy\overline z + x\overline y \overline z + \overline x yz + \overline x y\overline z + \overline x \overline y z\end{aligned}\)

03

(b) Discover the Solution.

Here \(F\left( {x,y,z} \right) = \left( {x + z} \right)y\)

To solve this use Boolean identities.

\(\begin{aligned}F\left( {x,y} \right) &= \left( {x + z} \right)y\\ &= xy + zy\\ &= xy.1 + zy.1\\ &= xy\left( {z + \overline z } \right) + zy\left( {x + \overline x } \right)\\ &=xyz + xy\overline z + zyx + zy\overline x \\ &= xyz + xy\overline z + xyz + \overline x yz\\ &= xyz + xy\overline z + \overline x yz\end{aligned}\)

04

(c) Determine the result.

Here \(F\left( {x,y,z} \right) = x\)

To solve this use Boolean identities.

\(\begin{aligned}F\left( {x,y} \right) &= x\\ &= x.1\\ &= x.1.1\\ &= x\left( {y + \overline y } \right)\left( {z + \overline z } \right)\\&=\left({xy + x\overline y } \right)\left( {z + \overline z }\right)\\ &= xyz + x\overline y z + xy\overline z + x\overline y \overline z \end{aligned}\)

05

(d) Evaluate the result.

Here \(F\left( {x,y,z} \right) = x\overline y \)

To solve this use Boolean identities.

\(\begin{aligned}F\left( {x,y} \right) &= x\overline y \\ &= x\overline y .1\\ &= x\overline y \left( {z + \overline z } \right)\\ &= x\overline y z + x\overline y \overline z \end{aligned}\)

Therefore, these are the sum of products of the Boolean functions.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free