Chapter 12: Q39E (page 819)
In Exercises 35–42, use the laws in Definition \(1\) to show that the stated properties hold in every Boolean algebra.
39. Show that De Morgan's laws hold in a Boolean algebra.
That is, show that for all \(x\) and \(y\), \(\overline {(x \vee y)} {\bf{ = }}\bar x \wedge \bar y\) and \(\overline {(x \wedge y)} = \bar x \vee \bar y\).
Short Answer
The given \(\overline {\left( {x \vee y} \right)} = \bar x \wedge \bar y\) and \(\overline {\left( {x \wedge y} \right)} = \bar x \vee \bar y\) is proved.
Step by step solution
Definition
Identity laws
\(\begin{array}{c}x \vee 0 = x\\x \wedge 1 = x\end{array}\)
Complement laws
\(\begin{array}{c}x \vee \bar x = 1\\x \wedge \bar x = 0\end{array}\)
Associative laws
\(\begin{array}{c}x \vee \left( {y \vee z} \right) = \left( {x \vee y} \right) \vee z\\x \wedge \left( {y \wedge z} \right) = \left( {x \wedge y} \right) \wedge z\end{array}\)
Distributive laws
\(\begin{array}{c}x \vee \left( {y \wedge z} \right) = \left( {x \vee y} \right) \wedge \left( {x \vee z} \right)\\x \wedge \left( {y \vee z} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\end{array}\)
De Morgan's laws
\(\begin{array}{c}\overline {\left( {x \vee y} \right)} = \bar x \wedge \bar y\\\overline {\left( {x \wedge y} \right)} = \bar x \vee \bar y\end{array}\)
Step 2: Using the associative, commutative, complement, distributive and identity laws
To proof: \(\overline {\left( {x \vee y} \right)} = \bar x \wedge \bar y\)
PROOF
\(y\)is the complement of \(x\)if and only if \(x \vee y = 1\)and\(x \wedge y = 0\).
Note: The complement is also unique, which was proven in one of the previous solutions.
Thus, you need to show that \(\bar x \wedge \bar y\) is the complement of \(x \vee y\).
\(\begin{aligned}\left( {x \vee y} \right) \vee \left( {\bar x \wedge \bar y} \right) &=& \left( {y \vee x} \right) \vee \left( {\bar x \wedge \bar y} \right)\\& =& y \vee \left( {x \vee \left( {\bar x \wedge \bar y} \right)} \right)\\&=& y \vee \left( {\left( {x \vee \bar x} \right) \wedge \left( {x \vee \bar y} \right)} \right)\\ &=& y \vee \left( {1 \wedge \left( {x \vee \bar y} \right)} \right)\end{aligned}\)
\(\begin{aligned}&=& y \vee \left( {\left( {x \vee \bar y} \right) \wedge 1} \right)\\ &=& y \vee \left( {x \vee \bar y} \right)\\&=& y \vee \left( {\bar y \vee x} \right)\\&=& \left( {y \vee \bar y} \right) \vee x\end{aligned}\)
\(\begin{aligned}&=& 1 \vee x\\&=& x \vee 1\\& = &1\end{aligned}\)
Using the associative, commutative, complement, distributive and identity laws
\(\begin{aligned}\left( {x \vee y} \right) \wedge \left( {\bar x \wedge \bar y} \right) &=& \left( {\left( {x \vee y} \right) \wedge \bar x} \right) \wedge \bar y\\& =& \left( {\left( {x \wedge \bar x} \right) \vee \left( {y \wedge \bar x} \right)} \right) \wedge \bar y\\ &=& \left( {0 \vee \left( {y \wedge \bar x} \right)} \right) \wedge \bar y\\& =& \left( {\left( {y \wedge \bar x} \right) \vee 0} \right) \wedge \bar y\end{aligned}\)
\(\begin{aligned} &=& \left( {y \wedge \bar x} \right) \wedge \bar y\\ &=& \left( {\bar x \wedge y} \right) \wedge \bar y\\ &=& \bar x \wedge \left( {y \wedge \bar y} \right)\\ &=& \bar x \wedge 0\\ &=& 0\end{aligned}\)
Thus \(\bar x \wedge \bar y\) is the (unique) complement of \(x \vee y\).
Therefore, it gets \(\overline {(x \vee y)} {\bf{ = }}\bar x \wedge \bar y\)
Step 4:Using the associative, commutative, complement, distributive and identity laws
To proof: \(\overline {\left( {x \wedge y} \right)} = \bar x \vee \bar y\)
PROOF
\(y\)is the complement of \(x\)if and only if \(x \vee y = 1\)and\(x \wedge y = 0\). Note: The complement is also unique, which was proven in one of the previous solutions.
Thus, you need to show that \(\bar x \vee \bar y\) is the complement of \(x \wedge y\).
\(\begin{aligned}\left( {x \wedge y} \right) \wedge \left( {\bar x \vee \bar y} \right) &=&\left( {y \wedge x} \right) \wedge \left( {\bar x \vee \bar y} \right)\\ &=& y \wedge \left( {x \wedge \left( {\bar x \vee \bar y} \right)} \right)\\ &=& y \wedge \left( {\left( {x \wedge \bar x} \right) \vee \left( {x \wedge \bar y} \right)} \right)\\ &=& y \wedge \left( {0 \vee \left( {x \wedge \bar y} \right)} \right)\end{aligned}\)
\(\begin{aligned} &=& y \wedge \left( {\left( {x \wedge \bar y} \right) \vee 0} \right)\\ &=& y \wedge \left( {x \wedge \bar y} \right)\\ &=& y \wedge \left( {\bar y \wedge x} \right)\\ &=&\left( {y \wedge \bar y} \right) \wedge x\end{aligned}\)
\(\begin{aligned} &=&0 \wedge x\\ &=& x \wedge 0\\ = 0\end{aligned}\)
Using the associative, commutative, complement, distributive and identity laws
Using the associative, commutative, complement, distributive and identity laws
\(\begin{aligned}\left( {x \wedge y} \right) \vee \left( {\bar x \vee \bar y} \right) &=& \left( {\left( {x \wedge y} \right) \vee \bar x} \right) \vee \bar y\\ &=& \left( {\left( {x \vee \bar x} \right) \wedge \left( {y \vee \bar x} \right)} \right) \vee \bar y\\ &=& \left( {1 \wedge \left( {y \vee \bar x} \right)} \right) \vee \bar y\\ &=& \left( {\left( {y \vee \bar x} \right) \wedge 1} \right) \vee \bar y\end{aligned}\)
\(\begin{aligned} &=& \left( {y \vee \bar x} \right) \vee \bar y\\&=& \left( {\bar x \vee y} \right) \vee \bar y\\ &=& \bar x \vee \left( {y \vee \bar y} \right)\\ &=& \bar x \vee 1\\ &=& 1\end{aligned}\)
Thus,\(\bar x \vee \bar y\) is the (unique) complement of \(x \wedge y\).
Therefore, it gets \(\overline {(x \wedge y)} {\bf{ = }}\bar x \vee \bar y\)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!