Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 35–42, use the laws in Definition \(1\) to show that the stated properties hold in every Boolean algebra.

39. Show that De Morgan's laws hold in a Boolean algebra.

That is, show that for all \(x\) and \(y\), \(\overline {(x \vee y)} {\bf{ = }}\bar x \wedge \bar y\) and \(\overline {(x \wedge y)} = \bar x \vee \bar y\).

Short Answer

Expert verified

The given \(\overline {\left( {x \vee y} \right)} = \bar x \wedge \bar y\) and \(\overline {\left( {x \wedge y} \right)} = \bar x \vee \bar y\) is proved.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

Identity laws

\(\begin{array}{c}x \vee 0 = x\\x \wedge 1 = x\end{array}\)

Complement laws

\(\begin{array}{c}x \vee \bar x = 1\\x \wedge \bar x = 0\end{array}\)

Associative laws

\(\begin{array}{c}x \vee \left( {y \vee z} \right) = \left( {x \vee y} \right) \vee z\\x \wedge \left( {y \wedge z} \right) = \left( {x \wedge y} \right) \wedge z\end{array}\)

Distributive laws

\(\begin{array}{c}x \vee \left( {y \wedge z} \right) = \left( {x \vee y} \right) \wedge \left( {x \vee z} \right)\\x \wedge \left( {y \vee z} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\end{array}\)

De Morgan's laws

\(\begin{array}{c}\overline {\left( {x \vee y} \right)} = \bar x \wedge \bar y\\\overline {\left( {x \wedge y} \right)} = \bar x \vee \bar y\end{array}\)

02

 Step 2: Using the associative, commutative, complement, distributive and identity laws

To proof: \(\overline {\left( {x \vee y} \right)} = \bar x \wedge \bar y\)

PROOF

\(y\)is the complement of \(x\)if and only if \(x \vee y = 1\)and\(x \wedge y = 0\).

Note: The complement is also unique, which was proven in one of the previous solutions.

Thus, you need to show that \(\bar x \wedge \bar y\) is the complement of \(x \vee y\).

\(\begin{aligned}\left( {x \vee y} \right) \vee \left( {\bar x \wedge \bar y} \right) &=& \left( {y \vee x} \right) \vee \left( {\bar x \wedge \bar y} \right)\\& =& y \vee \left( {x \vee \left( {\bar x \wedge \bar y} \right)} \right)\\&=& y \vee \left( {\left( {x \vee \bar x} \right) \wedge \left( {x \vee \bar y} \right)} \right)\\ &=& y \vee \left( {1 \wedge \left( {x \vee \bar y} \right)} \right)\end{aligned}\)

\(\begin{aligned}&=& y \vee \left( {\left( {x \vee \bar y} \right) \wedge 1} \right)\\ &=& y \vee \left( {x \vee \bar y} \right)\\&=& y \vee \left( {\bar y \vee x} \right)\\&=& \left( {y \vee \bar y} \right) \vee x\end{aligned}\)

\(\begin{aligned}&=& 1 \vee x\\&=& x \vee 1\\& = &1\end{aligned}\)

03

Using the associative, commutative, complement, distributive and identity laws

\(\begin{aligned}\left( {x \vee y} \right) \wedge \left( {\bar x \wedge \bar y} \right) &=& \left( {\left( {x \vee y} \right) \wedge \bar x} \right) \wedge \bar y\\& =& \left( {\left( {x \wedge \bar x} \right) \vee \left( {y \wedge \bar x} \right)} \right) \wedge \bar y\\ &=& \left( {0 \vee \left( {y \wedge \bar x} \right)} \right) \wedge \bar y\\& =& \left( {\left( {y \wedge \bar x} \right) \vee 0} \right) \wedge \bar y\end{aligned}\)

\(\begin{aligned} &=& \left( {y \wedge \bar x} \right) \wedge \bar y\\ &=& \left( {\bar x \wedge y} \right) \wedge \bar y\\ &=& \bar x \wedge \left( {y \wedge \bar y} \right)\\ &=& \bar x \wedge 0\\ &=& 0\end{aligned}\)

Thus \(\bar x \wedge \bar y\) is the (unique) complement of \(x \vee y\).

Therefore, it gets \(\overline {(x \vee y)} {\bf{ = }}\bar x \wedge \bar y\)

04

Step 4:Using the associative, commutative, complement, distributive and identity laws

To proof: \(\overline {\left( {x \wedge y} \right)} = \bar x \vee \bar y\)

PROOF

\(y\)is the complement of \(x\)if and only if \(x \vee y = 1\)and\(x \wedge y = 0\). Note: The complement is also unique, which was proven in one of the previous solutions.

Thus, you need to show that \(\bar x \vee \bar y\) is the complement of \(x \wedge y\).

\(\begin{aligned}\left( {x \wedge y} \right) \wedge \left( {\bar x \vee \bar y} \right) &=&\left( {y \wedge x} \right) \wedge \left( {\bar x \vee \bar y} \right)\\ &=& y \wedge \left( {x \wedge \left( {\bar x \vee \bar y} \right)} \right)\\ &=& y \wedge \left( {\left( {x \wedge \bar x} \right) \vee \left( {x \wedge \bar y} \right)} \right)\\ &=& y \wedge \left( {0 \vee \left( {x \wedge \bar y} \right)} \right)\end{aligned}\)

\(\begin{aligned} &=& y \wedge \left( {\left( {x \wedge \bar y} \right) \vee 0} \right)\\ &=& y \wedge \left( {x \wedge \bar y} \right)\\ &=& y \wedge \left( {\bar y \wedge x} \right)\\ &=&\left( {y \wedge \bar y} \right) \wedge x\end{aligned}\)

\(\begin{aligned} &=&0 \wedge x\\ &=& x \wedge 0\\ = 0\end{aligned}\)

05

Using the associative, commutative, complement, distributive and identity laws

Using the associative, commutative, complement, distributive and identity laws

\(\begin{aligned}\left( {x \wedge y} \right) \vee \left( {\bar x \vee \bar y} \right) &=& \left( {\left( {x \wedge y} \right) \vee \bar x} \right) \vee \bar y\\ &=& \left( {\left( {x \vee \bar x} \right) \wedge \left( {y \vee \bar x} \right)} \right) \vee \bar y\\ &=& \left( {1 \wedge \left( {y \vee \bar x} \right)} \right) \vee \bar y\\ &=& \left( {\left( {y \vee \bar x} \right) \wedge 1} \right) \vee \bar y\end{aligned}\)

\(\begin{aligned} &=& \left( {y \vee \bar x} \right) \vee \bar y\\&=& \left( {\bar x \vee y} \right) \vee \bar y\\ &=& \bar x \vee \left( {y \vee \bar y} \right)\\ &=& \bar x \vee 1\\ &=& 1\end{aligned}\)

Thus,\(\bar x \vee \bar y\) is the (unique) complement of \(x \wedge y\).

Therefore, it gets \(\overline {(x \wedge y)} {\bf{ = }}\bar x \vee \bar y\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free