Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises 35–42, use the laws in Definition \(1\) to show that the stated properties hold in every Boolean algebra.

35. Show that in a Boolean algebra, the idempotent laws \(x \vee x{\bf{ = }}x\) and \(x \wedge x{\bf{ = }}x\) hold for every element \(x\).

Short Answer

Expert verified

By using the identity, complement and distributive law, you get \(x \vee x = x,x \wedge x = x\).

Step by step solution

01

Definition

The complement of an element: \(\bar 0 = 1\) and \(\bar 1 = 0\)

The Boolean sum \( + \) or \(OR\) is \(1\) if either term is \(1\).

The Boolean product \( \cdot \) or \(AND\) is \(1\) if both terms are \(1\).

Identity laws

\(\begin{array}{c}x \vee 0 = x\\x \wedge 1 = x\end{array}\)

Complement laws

\(\begin{array}{c}x \vee \bar x = 1\\x \wedge \bar x = 0\end{array}\)

Distributive laws

\(\begin{array}{c}x \vee \left( {y \wedge z} \right) = \left( {x \vee y} \right) \wedge \left( {x \vee z} \right)\\x \wedge \left( {y \vee z} \right) = \left( {x \wedge y} \right) \vee \left( {x \wedge z} \right)\end{array}\)

Idempotent laws

\(\begin{array}{c}x \vee x = x\\x \wedge x = x\end{array}\)

02

Using the identity, complement and distributive laws

To proof: \(x \vee x = x\)

Using the identity, complement and distributive laws

\(\begin{eqnarray}x \vee x &=& \left( {x \vee x} \right) \wedge 1\\ &=& \left( {x \vee x} \right) \wedge \left( {x \vee \bar x} \right)\\ &=& x \vee \left( {x \wedge \bar x} \right)\\ &=& x \vee 0\\ &=& x\end{eqnarray}\)

Therefore, it gets \(x \vee x{\bf{ = }}x\).

03

Using the identity, complement and distributive laws

To proof: \(x \wedge x = x\)

Using the identity, complement and distributive laws

\(\begin{eqnarray}x \wedge x &=& \left( {x \wedge x} \right) \vee 0\\ &=& \left( {x \wedge x} \right) \vee \left( {x \wedge \bar x} \right)\\ &=& x \wedge \left( {x \vee \bar x} \right)\\ &=& x \wedge 1\\ &=& x\end{eqnarray}\)

Therefore, it gets \(x \wedge x{\bf{ = }}x\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).

\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)

use the laws in Definition \(1\) to show that the stated properties hold in every Boolean algebra.

Show that in a Boolean algebra, the complement of the element \(0\) is the element \(1\) and vice versa.

Determine whether \({\bf{F}} \le {\bf{G}}\) or \({\bf{G}} \le {\bf{F}}\) for the following pairs of functions.

\(\begin{array}{c}{\bf{a) F(x,y) = x,G(x,y) = x + y}}\\{\bf{b) F(x,y) = x + y,G(x,y) = xy}}\\{\bf{c) F(x,y) = \bar x,G(x,y) = x + y}}\end{array}\)

Construct circuits from inverters, AND gates, and ORgates to produce these outputs.

\(\begin{array}{l}{\bf{a)}}\overline {\bf{x}} {\bf{ + y}}\\{\bf{b)}}\overline {{\bf{(x + y)}}} {\bf{x}}\\{\bf{c)xyz + }}\overline {\bf{x}} \overline {\bf{y}} \overline {\bf{z}} \\{\bf{d)}}\overline {{\bf{(}}\overline {\bf{x}} {\bf{ + z)(y + }}\overline {\bf{z}} {\bf{)}}} \end{array}\)

Express each of the Boolean functions in Exercise 3 using the operator \( \downarrow \).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free