Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many different Boolean functions \({\bf{F(x,y,z)}}\) are there such that \({\bf{F(\bar x,y,z) = F(x,\bar y,z) = F(x,y,\bar z)}}\) for all values of the Boolean variables \({\bf{x,y}}\), and \({\bf{z}}\)\({\bf{?}}\)

Short Answer

Expert verified

There are \(4\) different Boolean functions of\({\bf{ }}F\left( {x,y,z} \right)\).

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \(\bar 0 = 1\) and \(\bar 1 = 0\)

The Boolean sum \( + \) or \(O{\bf{ }}R\) is \(1\) if either term is \(1\) .

The Boolean product or \(A{\bf{ }}N{\bf{ }}D\) is \(1\) if both terms are \(1\) .

The dual of a Boolean expression interchanges the Boolean sum and the Boolean product, and interchanges \(0\) and \(1\) .

Product rule If one event can occur in \(m\) ways \(A{\bf{ }}N{\bf{ }}D\) a second event can occur in \(n\) ways, then the number of ways that the two events can occur in sequence is then \(m \times n\)

02

Finding different Boolean functions

Given: \(F\left( {\bar x,y,z} \right) = F\left( {x,\bar y,z} \right) = F\left( {x,y,\bar z} \right)\)

There are three variables \(x,y,z\) and each variable can take on the value of \(0\)or \(1\) .

\(\begin{array}{l}\begin{array}{*{20}{l}}{\left( {x,{\bf{ }}y,{\bf{ }}z} \right) = \left( {0,0,0} \right){\bf{ }}}\\{\left( {x,{\bf{ }}y,{\bf{ }}z} \right) = \left( {1,0,0} \right){\bf{ }}}\\{\left( {x,{\bf{ }}y,{\bf{ }}z} \right) = \left( {0,1,0} \right){\bf{ }}}\end{array}\\\left( {x,{\bf{ }}y,{\bf{ }}z} \right) = \left( {1,1,0} \right)\end{array}\)

03

Substituting the values

\(\begin{array}{l}F\left( {\bar x,y,z} \right) = F\left( {1,0,0} \right)\\F\left( {x,\bar y,z} \right) = F\left( {0,1,0} \right)\\F\left( {x,y,\bar z} \right) = F\left( {0,0,1} \right)\\F\left( {1,0,0} \right) = F\left( {0,1,0} \right) = F\left( {0,0,1} \right)\end{array}\)

\(\begin{array}{l}F\left( {\bar x,y,z} \right) = F\left( {0,0,0} \right)\\F\left( {x,\bar y,z} \right) = F\left( {1,1,0} \right)\\F\left( {x,y,\bar z} \right) = F\left( {1,0,1} \right)\\F\left( {0,0,0} \right) = F\left( {1,1,0} \right) = F\left( {1,0,1} \right)\end{array}\)

\(\begin{array}{l}F\left( {\bar x,y,z} \right) = F\left( {1,1,0} \right)\\F\left( {x,\bar y,z} \right) = F\left( {0,0,0} \right)\\F\left( {x,y,\bar z} \right) = F\left( {0,1,1} \right)\\F\left( {0,0,0} \right) = F\left( {1,1,0} \right) = F\left( {1,0,1} \right) = F\left( {0,1,1} \right)\end{array}\)

\(\begin{array}{l}F\left( {\bar x,y,z} \right) = F\left( {0,1,0} \right)\\F\left( {x,\bar y,z} \right) = F\left( {1,0,0} \right)\\F\left( {x,y,\bar z} \right) = F\left( {1,1,1} \right)\\F\left( {1,0,0} \right) = F\left( {0,1,0} \right) = F(0,0,1) = F(1,1,1)\end{array}\)

Notes that in total, you need to assign \(2\) values \(\left( {F\left( {0,0,0} \right),{\bf{ }}F\left( {1,1,1} \right)} \right)\) to uniquely determine \(F\) and the other \(6\) values will follow from \(F\left( {0,0,0} \right) = F\left( {1,1,0} \right) = F\left( {1,0,1} \right) = F\left( {0,1,1} \right)\) and \(F\left( {1,0,0} \right) = F\left( {0,1,0} \right) = F\left( {0,0,1} \right) = F\left( {1,1,1} \right)\). Since you can assign a \(0\) or \(1\) to each of the \(2\) values, there are \(2\) options for \(F\left( {0,0,0} \right)\) and \(2\) options for \(F\left( {1,1,1} \right)\).

By the product rule:\(2 \times 2 = {2^2} = 4\).

Therefore, in total, there are then \(4\) different Boolean functions\({\bf{ }}F\left( {x,y,z} \right)\) such that \(F\left( {\bar x,y,z} \right) = F\left( {x,\bar y,z} \right) = F\left( {x,y,\bar z} \right)\)

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Show that you obtain De Morgan's laws for propositions (in Table \(6\) in Section \(1.3\)) when you transform De Morgan's laws for Boolean algebra in Table \(6\) into logical equivalences.

For each of these equalities either prove it is an identity or find a set of values of the variables for which it does not hold.

\(\begin{array}{l}a)x|(y\mid z){\bf{ = }}(x\mid y)|z\\b)x \downarrow (y \downarrow z){\bf{ = }}(x \downarrow y) \downarrow (x \downarrow z)\\c)x \downarrow (y\mid z){\bf{ = }}(x \downarrow y)\mid (x \downarrow z)\end{array}\)

Define the Boolean operator \( \odot \) as follows: \(1 \odot 1{\bf{ = }}1,1 \odot 0{\bf{ = }}0,0 \odot 1{\bf{ = }}0\), and \(0 \odot 0{\bf{ = }}1\).

use the laws in Definition \(1\) to show that the stated properties hold in every Boolean algebra.

Show that in a Boolean algebra, the modular properties hold. That is, show that \({\bf{x}} \wedge {\bf{(y}} \vee {\bf{(x}} \wedge {\bf{z)) = (x}} \wedge {\bf{y)}} \vee {\bf{(x}} \wedge {\bf{z)}}\) and \({\bf{x}} \vee {\bf{(y}} \wedge {\bf{(x}} \vee {\bf{z)) = (x}} \vee {\bf{y)}} \wedge {\bf{(x}} \vee {\bf{z)}}\).

Deal with the Boolean algebra \(\{ 0,1\} \) with addition, multiplication, and complement defined at the beginning of this section. In each case, use a table as in Example \(8\).

Verify the zero property.

The Boolean operator \( \oplus \), called the \(XOR\) operator, is defined by \(1 \oplus 1{\bf{ = }}0,1 \oplus 0{\bf{ = }}1,0 \oplus 1{\bf{ = }}1\), and \(0 \oplus 0{\bf{ = }}0\).

Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).

\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free