Chapter 12: Q32E (page 843)
Find a minimal sum-of-products expansion, given the \({\bf{K}}\)-map shown with don't care conditions indicated with \({\bf{d's}}\).
Short Answer
The minimal sum-of-products expansion is\({\bf{w\bar y + \bar wx}}\).
Chapter 12: Q32E (page 843)
Find a minimal sum-of-products expansion, given the \({\bf{K}}\)-map shown with don't care conditions indicated with \({\bf{d's}}\).
The minimal sum-of-products expansion is\({\bf{w\bar y + \bar wx}}\).
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{x,y}}\), and \({\bf{z}}\).
\(\begin{array}{l}{\bf{a) \bar xyz + \bar x\bar yz}}\\{\bf{b) xyz + xy\bar z + \bar xyz + \bar xy\bar z}}\\{\bf{c) xy\bar z + x\bar yz + x\bar y\bar z + \bar xyz + \bar x\bar yz}}\\{\bf{d) xyz + x\bar yz + x\bar y\bar z + \bar xyz + \bar xy\bar z + \bar x\bar y\bar z}}\end{array}\)
Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).
\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)
In Exercises 1โ5 find the output of the given circuit.
Show that you obtain the absorption laws for propositions (in Table \({\bf{6}}\) in Section \({\bf{1}}{\bf{.3}}\)) when you transform the absorption laws for Boolean algebra in Table 6 into logical equivalences.
Find a minimal sum-of-products expansion, given the \(K{\bf{ - }}\)map shown with don't care conditions indicated with\(d\)โs.
What do you think about this solution?
We value your feedback to improve our textbook solutions.