Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Find the sum-of-products expansions of these Boolean functions.

a)\({\bf{F}}\left( {{\bf{x}},{\rm{ }}{\bf{y}}} \right) = \overline {\bf{x}} {\bf{ + y}}\)

b)\({\bf{F}}\left( {{\bf{x}},{\rm{ }}{\bf{y}}} \right) = {\bf{x}}\overline {\bf{y}} \)

c)\({\bf{F}}\left( {{\bf{x}},{\rm{ }}{\bf{y}}} \right) = {\bf{1}}\)

d)\({\bf{F}}\left( {{\bf{x}},{\rm{ }}{\bf{y}}} \right) = \overline {\bf{y}} \)

Short Answer

Expert verified

The sum of product expansions is

(a) The sum of product is \(xy + \overline x y + \overline x \overline y \).

(b) The sum of product is \(x\overline y \).

(c) The sum of product is \(xy + \overline x y + x\overline y + \overline x \overline y \).

(d) The sum of product is \(x\overline y + \overline x \overline y \).

Step by step solution

01

Definition

The complements of an elements\(\overline {\bf{0}} {\bf{ = 1}}\)and\(\overline {\bf{1}} {\bf{ = 0}}\).

The Boolean sum + or OR is 1 if either term is 1.

The Boolean product (.) or AND is 1 if both terms are 1.

02

(a) Finding the solution.

Here \(F\left( {x,{\rm{ }}y} \right) = \overline x + y\).

To solve this use Boolean identities.

\(\begin{aligned}F\left( {x,y} \right) &= \overline x + y\\ &= \overline x .1 + y.1\\ &= \overline x \left( {y + \overline y } \right) + y\left( {x + \overline x } \right)\\ &= \overline x y + \overline x \overline y + yx + y\overline x\}\\\ &= \overline x y + \overline x \overline y + xy + y\overline x \\ &= \overline x y + \overline x \overline y + xy + \overline x y \\&= xy + \overline x y + \overline x \overline y \end{aligned}\)

03

(b) Discover the result.

Here \(F\left( {x,{\rm{ }}y} \right) = x\overline y \)

It is already in the sum of products form. Thus, the sum of products expansion of \(x\overline y \) is \(x\overline y \) itself.

04

(c) Evaluate the result.

Here \(F\left( {x,{\rm{ }}y} \right) = 1\)

To solve this use Boolean identities.

\(\begin{aligned}F\left( {x,y} \right) &= 1\\ &= 1.1\\ &= \left( {x + \overline x } \right)\left( {y + \overline y } \right)\\ &= \left( {x + \overline x } \right)y + \left( {x + \overline x } \right)y\\ &= y\left( {x + \overline x } \right) + \overline y \left( {x + \overline x } \right)\\ &= yx + y\overline x + y\overline x + \overline y \overline x \\ &=xy + \overline x y + x\overline y + \overline x \overline y \end{aligned}\)

05

(d) Solve to get the result.

Here \(F\left( {x,{\rm{ }}y} \right) = \overline y \)

To solve this use Boolean identities.

\(\begin{aligned}F\left( {x,y} \right) &= \overline y \\ &= \overline y .1\\ &= \overline y \left( {x + \overline x } \right)\\ &= \overline y x + \overline y \overline x \\ &= x\overline y + \overline x \overline y \end{aligned}\)

Therefore, by using the Boolean concept get the results.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

In Exercises 1โ€“5 find the output of the given circuit.

Show that if \({\bf{F}}\) and \({\bf{G}}\) are Boolean functions represented by Boolean expressions in \({\bf{n}}\) variables and \({\bf{F = G}}\), then \({{\bf{F}}^{\bf{d}}}{\bf{ = }}{{\bf{G}}^{\bf{d}}}\), where \({{\bf{F}}^{\bf{d}}}\) and \({{\bf{G}}^{\bf{d}}}\) are the Boolean functions represented by the duals of the Boolean expressions representing \({\bf{F}}\) and \({\bf{G}}\), respectively. (Hint: Use the result of Exercise \(29\).)

Draw the Hasse diagram for the poset consisting of the set of the \({\bf{16}}\)Boolean functions of degree two (shown in Table \({\bf{3}}\) of Section \({\bf{12}}{\bf{.1}}\)) with the partial ordering \( \le \).

Let \({\bf{x}}\) and \({\bf{y}}\) belong to \(\left\{ {{\bf{0,1}}} \right\}\). Does it necessarily follow that \({\bf{x = y}}\) if there exists a value \({\bf{z}}\) in \(\left\{ {{\bf{0,1}}} \right\}\) such that,

\(\begin{array}{l}{\bf{a) xz = yz?}}\\{\bf{b) x + z = y + z?}}\\{\bf{c) x}} \oplus {\bf{z = y}} \oplus {\bf{z?}}\\{\bf{d) x}} \downarrow {\bf{z = y}} \downarrow {\bf{z?}}\\{\bf{e) x}}|{\bf{z = y}}|z{\bf{?}}\end{array}\)

A Boolean function \({\bf{F}}\) is called self-dual if and only if \({\bf{F}}\left( {{{\bf{x}}_{\bf{1}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}} \right){\bf{ = }}\overline {{\bf{F}}\left( {{{{\bf{\bar x}}}_{\bf{1}}}{\bf{, \ldots ,}}{{{\bf{\bar x}}}_{\bf{n}}}} \right)} \).

Use a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{x,y}}\), and \({\bf{z}}\).

\(\begin{array}{l}{\bf{a) \bar xyz + \bar x\bar yz}}\\{\bf{b) xyz + xy\bar z + \bar xyz + \bar xy\bar z}}\\{\bf{c) xy\bar z + x\bar yz + x\bar y\bar z + \bar xyz + \bar x\bar yz}}\\{\bf{d) xyz + x\bar yz + x\bar y\bar z + \bar xyz + \bar xy\bar z + \bar x\bar y\bar z}}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free