Chapter 12: Q27E (page 842)
Use the method from Exercise \(26\) to simplify the product-of-sums expansion \((x + y + z)(x + y + \bar z)(x + \bar y + \bar z)(x + \bar y + z)(\bar x + y + z)\).
Short Answer
Simplified product \({\bf{x(y + z)}}\)
Chapter 12: Q27E (page 842)
Use the method from Exercise \(26\) to simplify the product-of-sums expansion \((x + y + z)(x + y + \bar z)(x + \bar y + \bar z)(x + \bar y + z)(\bar x + y + z)\).
Simplified product \({\bf{x(y + z)}}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a \({\bf{K}}\)-map to find a minimal expansion as a Boolean sum of Boolean products of each of these functions in the variables \({\bf{w, x, y}}\) and \({\bf{z}}\).
\(\begin{array}{l}{\bf{a) wxyz + wx\bar yz + wx\bar y\bar z + w\bar xy\bar z + w\bar x\bar yz}}\\{\bf{b) wxy\bar z + wx\bar yz + w\bar xyz + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{c) wxyz + wxy\bar z + wx\bar yz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\\{\bf{d) wxyz + wxy\bar z + wx\bar yz + w\bar xyz + w\bar xy\bar z + \bar wxyz + \bar w\bar xyz + \bar w\bar xy\bar z + \bar w\bar x\bar yz}}\end{array}\)
Find the depth of
a)The circuit constructed in Example 2 for majority voting among three people.
b)The circuit constructed in Example 3 for a light controlled by two switches.
c)The half adder shown in Figure 8.
d)The full adder shown in Figure 9.
In Exercises 1โ5 find the output of the given circuit.
Which of these functions are self-dual?
\(\begin{array}{l}\left. {\bf{a}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = x\\\left. {\bf{b}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar x\bar y}}\\\left. {\bf{c}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{x + y}}\\\left. {\bf{d}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar xy}}\end{array}\)
Simplify these expressions.
\(\begin{array}{l}{\bf{a) x}} \oplus {\bf{0}}\\{\bf{b) x}} \oplus {\bf{1}}\\{\bf{c) x}} \oplus {\bf{x}}\\{\bf{d) x}} \oplus {\bf{\bar x}}\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.