Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove or disprove these equalities.

\(\begin{array}{l}a)\;x \oplus (y \oplus z){\bf{ = }}(x \oplus y) \oplus z\\b)\;x{\bf{ + }}(y \oplus z){\bf{ = }}(x{\bf{ + }}y) \oplus (x{\bf{ + }}z)\\c)\;x \oplus (y{\bf{ + }}z){\bf{ = }}(x \oplus y){\bf{ + }}(x \oplus z)\end{array}\)

Short Answer

Expert verified
  1. The given equality \(x \oplus \left( {y \oplus z} \right) = \left( {x \oplus y} \right) \oplus z\) is proved.
  2. The given equality \(x + \left( {y \oplus z} \right) = \left( {x + y} \right) \oplus \left( {x + z} \right)\) is proved.
  3. The given equality \(x \oplus \left( {y + z} \right) = \left( {x \oplus y} \right) + \left( {x \oplus z} \right)\) is proved.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \(\bar 0 = 1\) and \(\bar 1 = 0\)

The Boolean sum \( + \) or \(OR\) is \(1\) if either term is \(1\).

The Boolean product \( \cdot \) or \(AND\) is \(1\) if both terms are \(1\).

The \(XOR\) operator \( \oplus \) is \(1\) if one of the terms is \(1\) (but not both).

02

Step 2:(a) Using the operator

\(x,y\)and \(z\) can both take on the value of \(0\) or \(1\).

The \(XOR\) operator is \(1\) if one of the two elements (but not both) are \(1\).

\(\begin{array}{*{20}{r}}x&y&z&{y \oplus z}&{x \oplus y}&{x \oplus \left( {y \oplus z} \right)}&{\left( {x \oplus y} \right) \oplus z}\\0&0&0&0&0&0&0\\0&0&1&1&0&1&1\\0&1&0&1&1&1&1\\0&1&1&0&1&0&0\\1&0&0&0&1&1&1\\1&0&1&1&1&0&0\\1&1&0&1&0&0&0\\1&1&1&0&0&1&1\end{array}\)

Notes that the last two columns of the table are identical

Therefore, the required result is \(x \oplus \left( {y \oplus z} \right) = \left( {x \oplus y} \right) \oplus z\).

03

Step 3:(b) Using the operator

\(x\)and \(y\) can both take on the value of \(0\) or \(1\).

The \(XOR\) operator is \(1\) if one of the two elements (but not both) are \(1\).

\(\begin{array}{*{20}{r}}x&y&z&{y \oplus z}&{x + y}&{x + z}&{x + \left( {y \oplus z} \right)}&{\left( {x + y} \right) \oplus \left( {x + z} \right)}\\0&0&0&0&0&0&0&0\\0&0&1&1&0&1&1&1\\0&1&0&1&1&0&1&0\\0&1&1&0&1&1&0&0\\1&0&0&0&1&1&1&0\\1&0&1&1&1&1&1&0\\1&1&0&1&1&1&1&0\\1&1&1&0&1&1&1&0\end{array}\)

Notes that the last two columns of the table are NOT identical.

Therefore, the required result is \(x + \left( {y \oplus z} \right) = \left( {x + y} \right) \oplus \left( {x + z} \right)\).

04

(c) Using the operator

\(x\)and \(y\) can both take on the value of \(0\) or \(1\).

The \(XOR\) operator is \(1\) if one of the two elements (but not both) are \(1\).

\(\begin{array}{*{20}{r}}x&y&z&{y + z}&{x \oplus y}&{x \oplus z}&{x \oplus \left( {y + z} \right)}&{\left( {x \oplus y} \right) + \left( {x \oplus z} \right)}\\0&0&0&0&0&0&0&0\\0&0&1&1&0&1&1&1\\0&1&0&1&1&0&1&1\\0&1&1&1&1&1&1&1\\1&0&0&0&1&1&1&1\\1&0&1&1&1&0&0&1\\1&1&0&1&0&1&0&1\\1&1&1&1&0&0&0&0\end{array}\)

Notes that the last two columns of the table are NOT identical

Therefore, the required result is \(x \oplus \left( {y + z} \right) = \left( {x \oplus y} \right) + \left( {x \oplus z} \right)\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free