Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Prove or disprove these equalities.

\(\begin{array}{l}a)\;x \oplus (y \oplus z){\bf{ = }}(x \oplus y) \oplus z\\b)\;x{\bf{ + }}(y \oplus z){\bf{ = }}(x{\bf{ + }}y) \oplus (x{\bf{ + }}z)\\c)\;x \oplus (y{\bf{ + }}z){\bf{ = }}(x \oplus y){\bf{ + }}(x \oplus z)\end{array}\)

Short Answer

Expert verified
  1. The given equality \(x \oplus \left( {y \oplus z} \right) = \left( {x \oplus y} \right) \oplus z\) is proved.
  2. The given equality \(x + \left( {y \oplus z} \right) = \left( {x + y} \right) \oplus \left( {x + z} \right)\) is proved.
  3. The given equality \(x \oplus \left( {y + z} \right) = \left( {x \oplus y} \right) + \left( {x \oplus z} \right)\) is proved.

Step by step solution

01

Definition

The complement of an element: \(\bar 0 = 1\) and \(\bar 1 = 0\)

The Boolean sum \( + \) or \(OR\) is \(1\) if either term is \(1\).

The Boolean product \( \cdot \) or \(AND\) is \(1\) if both terms are \(1\).

The \(XOR\) operator \( \oplus \) is \(1\) if one of the terms is \(1\) (but not both).

02

Step 2:(a) Using the operator

\(x,y\)and \(z\) can both take on the value of \(0\) or \(1\).

The \(XOR\) operator is \(1\) if one of the two elements (but not both) are \(1\).

\(\begin{array}{*{20}{r}}x&y&z&{y \oplus z}&{x \oplus y}&{x \oplus \left( {y \oplus z} \right)}&{\left( {x \oplus y} \right) \oplus z}\\0&0&0&0&0&0&0\\0&0&1&1&0&1&1\\0&1&0&1&1&1&1\\0&1&1&0&1&0&0\\1&0&0&0&1&1&1\\1&0&1&1&1&0&0\\1&1&0&1&0&0&0\\1&1&1&0&0&1&1\end{array}\)

Notes that the last two columns of the table are identical

Therefore, the required result is \(x \oplus \left( {y \oplus z} \right) = \left( {x \oplus y} \right) \oplus z\).

03

Step 3:(b) Using the operator

\(x\)and \(y\) can both take on the value of \(0\) or \(1\).

The \(XOR\) operator is \(1\) if one of the two elements (but not both) are \(1\).

\(\begin{array}{*{20}{r}}x&y&z&{y \oplus z}&{x + y}&{x + z}&{x + \left( {y \oplus z} \right)}&{\left( {x + y} \right) \oplus \left( {x + z} \right)}\\0&0&0&0&0&0&0&0\\0&0&1&1&0&1&1&1\\0&1&0&1&1&0&1&0\\0&1&1&0&1&1&0&0\\1&0&0&0&1&1&1&0\\1&0&1&1&1&1&1&0\\1&1&0&1&1&1&1&0\\1&1&1&0&1&1&1&0\end{array}\)

Notes that the last two columns of the table are NOT identical.

Therefore, the required result is \(x + \left( {y \oplus z} \right) = \left( {x + y} \right) \oplus \left( {x + z} \right)\).

04

(c) Using the operator

\(x\)and \(y\) can both take on the value of \(0\) or \(1\).

The \(XOR\) operator is \(1\) if one of the two elements (but not both) are \(1\).

\(\begin{array}{*{20}{r}}x&y&z&{y + z}&{x \oplus y}&{x \oplus z}&{x \oplus \left( {y + z} \right)}&{\left( {x \oplus y} \right) + \left( {x \oplus z} \right)}\\0&0&0&0&0&0&0&0\\0&0&1&1&0&1&1&1\\0&1&0&1&1&0&1&1\\0&1&1&1&1&1&1&1\\1&0&0&0&1&1&1&1\\1&0&1&1&1&0&0&1\\1&1&0&1&0&1&0&1\\1&1&1&1&0&0&0&0\end{array}\)

Notes that the last two columns of the table are NOT identical

Therefore, the required result is \(x \oplus \left( {y + z} \right) = \left( {x \oplus y} \right) + \left( {x \oplus z} \right)\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free