Chapter 12: Q24SE (page 844)
Show that \({\bf{F}}(w,x,y,z) = wx + {\bf{yz}}\) is not a threshold function.
Short Answer
Thus \({\bf{F}}(w,x,y,z) = wx + {\bf{yz}}\) is not a threshold function.
Chapter 12: Q24SE (page 844)
Show that \({\bf{F}}(w,x,y,z) = wx + {\bf{yz}}\) is not a threshold function.
Thus \({\bf{F}}(w,x,y,z) = wx + {\bf{yz}}\) is not a threshold function.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 1โ5 find the output of the given circuit.
Show that \(x \odot y{\bf{ = }}\overline {(x \oplus y)} \).
Which of these functions are self-dual?
\(\begin{array}{l}\left. {\bf{a}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = x\\\left. {\bf{b}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar x\bar y}}\\\left. {\bf{c}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{x + y}}\\\left. {\bf{d}} \right)\;{\bf{F}}\left( {{\bf{x,y}}} \right) = {\bf{xy + \bar xy}}\end{array}\)
Find the sum-of-products expansions of the Boolean function \({\bf{F}}\left( {{\bf{x, y, z}}} \right)\) that equals 1 if and only if
a) \({\bf{x = 0}}\)
b) \({\bf{xy = 0}}\)
c) \({\bf{x + y = 0}}\)
d) \({\bf{xyz = 0}}\)
In Exercises 1โ5 find the output of the given circuit.
What do you think about this solution?
We value your feedback to improve our textbook solutions.