Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the Quine–McCluskey method to simplify the sum-of-products expansions in Example \(4\).

Short Answer

Expert verified

\({\bf{(a)}}\)Simplified sum-of-products expansion is \({\bf{wxy + w\bar xz + w\bar y\bar z + \bar w\bar xy + \bar wx\bar yz}}\)

\({\bf{(b)}}\)Simplified sum-of-products expansion is \({\bf{\bar y\bar z + \bar x\bar z + w\bar xy}}\)

\({\bf{(c)}}\) Simplified sum-of-products expansion is \({\bf{\bar z + \bar wx + w\bar xy}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

It is seen that K-maps can be used to produce minimal expansions of Boolean functions as Boolean sums of Boolean products. For these reasons there is a need for a procedure for simplifying sum-of-products expansions that can be mechanized. The Quine–McCluskey method is such a procedure. It can be used for Boolean functions in any number of variables. The Quine–McCluskey method consists of two parts. The first part finds those terms that are candidates for inclusion in a minimal expansion as a Boolean sum of Boolean products. The second part determines which of these terms to actually use.

02

Using the Quine-McClusky method

\({\bf{wxyz + wxy\bar z + wy\bar y\bar z + w\bar xyz + w\bar x\bar yz + w\bar x\bar y\bar z + \bar wx\bar yz + \bar w\bar xyz + \bar w\bar xy\bar z}}\)

For every given term, replace a variable \(x\) by \(1\) and replace the complement of a variable \({\bf{\bar x}}\) by \(0\) to obtain the string.

\(\begin{array}{*{20}{r}}{{\bf{ INITIAL }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{\bf{1}}&{{\bf{wxyz}}}&{{\bf{1111}}}\\{\bf{2}}&{{\bf{wxy\bar z}}}&{{\bf{1110}}}\\{\bf{3}}&{{\bf{w\bar xyz}}}&{{\bf{1011}}}\\{\bf{4}}&{{\bf{wy\bar y\bar z}}}&{{\bf{1100}}}\\{\bf{5}}&{{\bf{w\bar x\bar yz}}}&{{\bf{1001}}}\\{\bf{6}}&{{\bf{\bar wx\bar yz}}}&{{\bf{0101}}}\\{\bf{7}}&{{\bf{\bar w\bar xyz}}}&{{\bf{0011}}}\\{\bf{8}}&{{\bf{w\bar x\bar y\bar z}}}&{{\bf{1000}}}\\{\bf{9}}&{{\bf{\bar w\bar xy\bar z}}}&{{\bf{0010}}}\end{array}\)

Step \(1\) Minterms that can differ exactly \(1\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 1 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,2)}}}&{{\bf{wxy}}}&{{\bf{111 - }}}\\{{\bf{(1,3)}}}&{{\bf{wxz}}}&{{\bf{1 - 11}}}\\{{\bf{(2,4)}}}&{{\bf{wx\bar z}}}&{{\bf{11 - 0}}}\\{{\bf{(3,5)}}}&{{\bf{w\bar xz}}}&{{\bf{10 - 1}}}\\{{\bf{(3,7)}}}&{{\bf{\bar xyz}}}&{{\bf{ - 011}}}\\{{\bf{(4,8)}}}&{{\bf{w\bar y\bar z}}}&{{\bf{1 - 00}}}\\{{\bf{(5,8)}}}&{{\bf{w\bar x\bar y}}}&{{\bf{100 - }}}\\{{\bf{(7,9)}}}&{{\bf{\bar w\bar xy}}}&{{\bf{001 - }}}\end{array}\)

The strings in the last step do not differ by \(1\) bit (pairwise), thus the algorithm will discontinue.The simplified sum-of-products expansion then is the sum of the least number of terms in the last step such that initial terms \(1\) to \(9\) are included.Note that term \(6\) is not included in step \(1\), thus we need to add term \(6(\bar wx\bar yz)\) separately.Note that we need to include \((7,9)\) from step \(1\) (as it is the only term containing \(9\)). For the remaining \(6\) terms, we only require three terms, let us take \((1,2),(3,5)\) and \((4,8)\).

Simplified sum-of-products expansion\({\bf{wxy + w\bar xz + w\bar y\bar z + \bar w\bar xy + \bar wx\bar yz}}\).

03

Using the Quine-McClusky method

\({\bf{wx\bar y\bar z + w\bar xyz + w\bar xy\bar z + w\bar x\bar y\bar z + \bar wx\bar y\bar z + \bar w\bar xy\bar z + \bar w\bar x\bar y\bar z}}\)

For every given term, replace a variable \({\bf{x}}\) by \(1\) and replace the complement of a variable \({\bf{\bar x}}\) by \(0\) to obtain the string.

\(\begin{array}{*{20}{r}}{{\bf{INITAIL}}}&{{\bf{Term}}}&{{\bf{String}}}\\{\bf{1}}&{{\bf{wx\bar y\bar z}}}&{{\bf{1011}}}\\{\bf{2}}&{{\bf{w\bar xyz}}}&{{\bf{1100}}}\\{\bf{3}}&{{\bf{w\bar xy\bar z}}}&{{\bf{1010}}}\\{\bf{4}}&{{\bf{w\bar x\bar y\bar z}}}&{{\bf{1000}}}\\{\bf{5}}&{{\bf{\bar wx\bar y\bar z}}}&{{\bf{0100}}}\\{\bf{6}}&{{\bf{\bar w\bar xy\bar z}}}&{{\bf{0010}}}\\{\bf{7}}&{{\bf{\bar w\bar x\bar y\bar z}}}&{{\bf{0000}}}\end{array}\)

Step \(1\) Minterms that can differ exactly \(1\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{l}}{{\bf{STEP 1}}}&{{\bf{Term}}}&{{\bf{String}}}\\{{\bf{(1,3)}}}&{{\bf{w\bar xy}}}&{{\bf{101 - }}}\\{{\bf{(2,4)}}}&{{\bf{w\bar y\bar z}}}&{{\bf{1 - 00}}}\\{{\bf{(2,5)}}}&{{\bf{x\bar y\bar z}}}&{{\bf{ - 100}}}\\{{\bf{(3,4)}}}&{{\bf{w\bar x\bar z}}}&{{\bf{10 - 0}}}\\{{\bf{(3,6)}}}&{{\bf{\bar xy\bar z}}}&{{\bf{ - 010}}}\\{{\bf{(4,7)}}}&{{\bf{\bar x\bar y\bar z}}}&{{\bf{ - 000}}}\\{{\bf{(5,7)}}}&{{\bf{\bar w\bar y\bar z}}}&{{\bf{0 - 00}}}\\{{\bf{(6,7)}}}&{{\bf{\bar w\bar x\bar z}}}&{{\bf{00 - 0}}}\end{array}\)

Step \(2\) Minterms that can differ exactly \(1\) position in the bit string of the previous step are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{l}}{{\bf{STEP 2}}}&{{\bf{Term}}}&{{\bf{String}}}\\{{\bf{(2,4,5,7)}}}&{{\bf{\bar y\bar z}}}&{{\bf{ - - 00}}}\\{{\bf{(3,4,6,7)}}}&{{\bf{\bar x\bar z}}}&{{\bf{ - 0 - 0}}}\end{array}\)

The strings in the last step do not differ by \(1\) bit (pairwise), thus the algorithm will discontinue. The simplified sum-of-products expansion then is the sum of the least number of terms in the last step such that initial terms \(1\) to \(7\) are included. Since the two terms in step \(2\) contain different terms, both terms will have to be included. Term \(1\) is then the only term still missing, thus we take a term containing \(1\) from step \(1\), which can only be \(w\bar xy(1,3)\).

Simplified sum-of-products expansion\({\bf{\bar y\bar z + \bar x\bar z + w\bar xy}}\).

04

Using the Quine-McClusky method

Quine-McCluskey method

\({\bf{wxy\bar z + wx\bar y\bar z + w\bar xyz + w\bar xy\bar z + w\bar x\bar y\bar z + \bar wxyz + \bar wxy\bar z + \bar wx\bar y\bar z + \bar wx\bar yz + \bar w\bar xy\bar z + \bar w\bar x\bar y\bar z}}\)

For every given term, replace a variable \({\bf{x}}\) by \(1\) and replace the complement of a variable \({\bf{\bar x}}\) by \(0\) to obtain the string.

\(\begin{array}{*{20}{r}}{{\bf{ INITIAL }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{\bf{1}}&{{\bf{wxy\bar z}}}&{{\bf{1110}}}\\{\bf{2}}&{{\bf{w\bar xyz}}}&{{\bf{1011}}}\\{\bf{3}}&{{\bf{\bar wxyz}}}&{{\bf{0111}}}\\{\bf{4}}&{{\bf{wx\bar y\bar z}}}&{{\bf{1100}}}\\{\bf{5}}&{{\bf{w\bar xy\bar z}}}&{{\bf{1010}}}\\{\bf{6}}&{{\bf{\bar wxy\bar z}}}&{{\bf{0110}}}\\{\bf{7}}&{{\bf{\bar wx\bar yz}}}&{{\bf{0101}}}\\{\bf{8}}&{{\bf{w\bar x\bar y\bar z}}}&{{\bf{1000}}}\\{\bf{9}}&{{\bf{\bar wx\bar y\bar z}}}&{{\bf{0100}}}\\{{\bf{10}}}&{{\bf{\bar w\bar xy\bar z}}}&{{\bf{0010}}}\\{{\bf{11}}}&{{\bf{\bar w\bar x\bar y}}}&{{\bf{0000}}}\end{array}\)

Step \(1\) Minterms that can differ exactly \(1\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 1 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,4)}}}&{{\bf{wx\bar z}}}&{{\bf{11 - 0}}}\\{{\bf{(1,5)}}}&{{\bf{wy\bar z}}}&{{\bf{1 - 10}}}\\{{\bf{(1,6)}}}&{{\bf{xy\bar z}}}&{{\bf{ - 110}}}\\{{\bf{(2,5)}}}&{{\bf{w\bar xy}}}&{{\bf{101 - }}}\\{{\bf{(3,6)}}}&{{\bf{\bar wxy}}}&{{\bf{011 - }}}\\{{\bf{(3,7)}}}&{{\bf{\bar wxz}}}&{{\bf{01 - 1}}}\\{{\bf{(4,8)}}}&{{\bf{w\bar y\bar z}}}&{{\bf{1 - 00}}}\\{{\bf{(4,9)}}}&{{\bf{x\bar y\bar z}}}&{{\bf{ - 100}}}\\{{\bf{(5,8)}}}&{{\bf{w\bar x\bar z}}}&{{\bf{10 - 0}}}\\{{\bf{(5,10)}}}&{{\bf{\bar xy\bar z}}}&{{\bf{ - 010}}}\\{{\bf{(6,9)}}}&{{\bf{\bar wx\bar z}}}&{{\bf{01 - 0}}}\\{{\bf{(6,10)}}}&{{\bf{\bar wy\bar z}}}&{{\bf{0 - 10}}}\\{{\bf{(7,9)}}}&{{\bf{\bar wx\bar y}}}&{{\bf{010 - }}}\\{{\bf{(8,11)}}}&{{\bf{\bar x\bar y\bar z}}}&{{\bf{ - 000}}}\\{{\bf{(9,11)}}}&{{\bf{\bar w\bar y\bar z}}}&{{\bf{0 - 00}}}\\{{\bf{(10,11)}}}&{{\bf{\bar w\bar x\bar z}}}&{{\bf{00 - 0}}}\end{array}\)

Step \(2\) Minterms that can differ exactly \(1\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 2 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,4,5,8)}}}&{{\bf{w\bar z}}}&{{\bf{1 - - 0}}}\\{{\bf{(1,4,6,9)}}}&{{\bf{x\bar z}}}&{{\bf{ - 1 - 0}}}\\{{\bf{(1,5,6,10)}}}&{{\bf{y\bar z}}}&{{\bf{ - - 10}}}\\{{\bf{(3,6,7,9)}}}&{{\bf{\bar wx}}}&{{\bf{01 - - }}}\\{{\bf{(4,8,9,11)}}}&{{\bf{\bar y\bar z}}}&{{\bf{ - - 00}}}\\{{\bf{(5,8,10,11)}}}&{{\bf{\bar x\bar z}}}&{{\bf{ - 0 - 0}}}\\{{\bf{(10,11)}}}&{{\bf{\bar w\bar z}}}&{{\bf{0 - - 0}}}\end{array}\)

Step \(3\) Minterms that can differ exactly \(1\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{l}}{{\bf{STEP 3}}}&{{\bf{Term}}}&{{\bf{String}}}\\{{\bf{(1,4,5,6,8,9,10,11)}}}&{{\bf{\bar z}}}&{{\bf{ - - - 0}}}\end{array}\)

Only one string remains in the last step, thus the algorithm will discontinue.The simplified sum-of-products expansion then is the sum of the least number of terms in the last step such that initial terms \(1\) to \(11\) are included. The last step only included one term; thus, this term will definitely be included. Terms \(2\), \(3\) and \(7\) are still missing. Term \(3\) and \(7\) can be added by using term \(\bar wx(3,6,7,9)\) from step \(2\) and the remaining term \(2\) can be added using the term \(w\bar xy(2,5)\) from step \(1\).

Simplified sum-of-products expansion\({\bf{\bar z + \bar wx + w\bar xy}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free