Chapter 12: Q23SE (page 844)
Show that \({\bf{F(x,y) = x}} \oplus {\bf{y}}\) is not a threshold function.
Short Answer
The given \({\bf{F(x,y) = x}} \oplus {\bf{y}}\) is not a threshold function.
Chapter 12: Q23SE (page 844)
Show that \({\bf{F(x,y) = x}} \oplus {\bf{y}}\) is not a threshold function.
The given \({\bf{F(x,y) = x}} \oplus {\bf{y}}\) is not a threshold function.
All the tools & learning materials you need for study success - in one app.
Get started for freeHow many different Boolean functions \({\bf{F(x,y,z)}}\) are there such that \({\bf{F(\bar x,y,z) = F(x,\bar y,z) = F(x,y,\bar z)}}\) for all values of the Boolean variables \({\bf{x,y}}\), and \({\bf{z}}\)\({\bf{?}}\)
Show that \({\bf{F}}\left( {{\bf{x, y, z}}} \right){\bf{ = x y + x z + y z}}\) has the value \(1\) if and only if at least two of the variables \({\bf{x, y}}\), and \({\bf{z}}\) have the value \(1\) .
Construct a multiplexer using AND gates, OR gates, andinverters that has as input the four bits\({{\bf{x}}_{\bf{o}}}{\bf{,}}{{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{,}}{{\bf{x}}_{\bf{3}}}\)and the two control bits\({{\bf{c}}_{\bf{o}}}\)and\({{\bf{c}}_{\bf{1}}}\). Set up the circuit so that\({{\bf{x}}_{\bf{i}}}\)is the output, where iis the value of the two-bit integer\({{\bf{(}}{{\bf{c}}_{\bf{1}}}{{\bf{c}}_{\bf{o}}}{\bf{)}}_{\bf{2}}}\).The depthof a combinatorial circuit can be defined by specifyingthat the depth of the initial input is 0 and if a gate has ndifferent inputs at depths\({{\bf{d}}_{\bf{1}}}{\bf{,}}{{\bf{d}}_{\bf{2}}}{\bf{,}}.....{\bf{,}}{{\bf{d}}_{\bf{n}}}\),respectively, then its outputs have depth equal to max\({\bf{(}}{{\bf{d}}_{\bf{1}}}{\bf{,}}{{\bf{d}}_{\bf{2}}}{\bf{,}}.....{\bf{,}}{{\bf{d}}_{\bf{n}}}{\bf{) + 1}}\); this value is also defined to be the depth of the gate. The depth of a combinatorial circuit is the maximum depth of the gates in the circuit.
Construct a half adder using NAND gates.
Determine whether \({\bf{F}} \le {\bf{G}}\) or \({\bf{G}} \le {\bf{F}}\) for the following pairs of functions.
\(\begin{array}{c}{\bf{a) F(x,y) = x,G(x,y) = x + y}}\\{\bf{b) F(x,y) = x + y,G(x,y) = xy}}\\{\bf{c) F(x,y) = \bar x,G(x,y) = x + y}}\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.