Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A Boolean function that can be represented by a threshold gate is called a threshold function. Show that each of these functions is a threshold function.

\(\begin{array}{l}a){\bf{F(x) = \bar x}}\\{\bf{b)F(x,y) = x + y}}\\{\bf{c)F(x,y) = xy}}\\{\bf{d)F(x,y) = x}}\mid y\\e)F({\bf{x,y) = }}x \downarrow y\\f)F(x,y,{\bf{z) = x + yz}}\\{\bf{g)F(w,x,y,z) = w + xy + z}}\\{\bf{h)F(w,x,y,z) = wxz + x\bar y}}z\end{array}\)

Short Answer

Expert verified

\((a)\)The given function \({\bf{F(x) = \bar x}}\) is threshold function.

\(({\bf{b)}}\)The given function \({\bf{F(x,y) = x + y}}\) is threshold function.

\(({\bf{c)}}\)The given function \({\bf{F(x,y) = xy}}\) is threshold function.

\(({\bf{d)}}\)The given function \({\bf{F(x,y) = x}}\mid y\) is threshold function.

\((e)\)The given function \(F({\bf{x,y) = }}x \downarrow y\) is threshold function.

\((f)\)The given function \(F(x,y,{\bf{z) = x + yz}}\) is threshold function.

\(({\bf{g)}}\)The given function \({\bf{F(w,x,y,z) = w + xy + z}}\) is threshold function.

\(({\bf{h)}}\) The given function \({\bf{F(w,x,y,z) = wxz + x\bar y}}z\) is threshold function.

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

The complement of an element: \(\bar 0{\bf{ = 1}}\) and \({\bf{\bar 1 = 0}}\).

The Boolean sum \({\bf{ + }}\) or \(OR\) is \({\bf{1}}\) if either term is \({\bf{1}}\).

The Boolean product \( \cdot \) or \(AND\) is \({\bf{1}}\) if both terms are \({\bf{1}}\).

The \(NOR\) operator \( \downarrow \) is \({\bf{1}}\) if both terms are \({\bf{0}}\).

The \(XOR\) operator \( \oplus \) is \({\bf{1}}\) if one of the terms is \({\bf{1}}\) (but not both).

The \({\bf{NAND}}\) operator \(\mid \) is \({\bf{1}}\) if either term is \({\bf{0}}\).

A threshold gate produces output \({\bf{y}}\) if the input \({{\bf{x}}_{\bf{1}}}{\bf{,}}{{\bf{x}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{x}}_{\bf{n}}}\) exceeds the threshold value \(T\) for the weights \({{\bf{w}}_{\bf{1}}}{\bf{,}}{{\bf{w}}_{\bf{2}}}{\bf{, \ldots ,}}{{\bf{w}}_{\bf{n}}}\left( {{{\bf{w}}_{\bf{1}}}{{\bf{x}}_{\bf{1}}}{\bf{ + }}{{\bf{w}}_{\bf{2}}}{{\bf{x}}_{\bf{2}}}{\bf{ + \ldots + }}{w_n}{x_n} \ge T} \right)\).

02

Check whether the given is threshold or not

(a)

It is given that \({\bf{F(x) = \bar x}}\).

Let us first determine a table of values for all possible values of \({\bf{x}}\).

\(\begin{array}{*{20}{c}}x&{F(x){\bf{ = }}\bar x}\\0&1\\1&0\end{array}\)

Let us assign the following values:

\(w = - 1\)(Weight of \(x\))

\(T = - \frac{1}{2}\)

If \(x{\bf{ = 1}}\), then \(wx{\bf{ = - }}1 \cdot 1{\bf{ = - 1 < }}T\) and thus the threshold gate then returns \({\bf{0}}\).

If \({\bf{x = }}0\), then \(wx{\bf{ = - }}1 \cdot 0{\bf{ = 0 > }}T\) and thus the threshold gate then returns \(1\).

Thus, the Boolean function \({\bf{F(x) = \bar x}}\) can be represented by this threshold gate.

Hence, \({\bf{F(x) = \bar x}}\) is a threshold function.

03

Check whether the given is threshold or not

(b)

It is given that \({\bf{F(x,y) = x + y}}\).

Let us first determine a table of values for all possible values of \(x\).

\(\begin{array}{*{20}{c}}x&y&{F(x{\bf{,y) = x + }}y}\\0&0&0\\0&1&1\\1&0&1\\1&1&1\end{array}\)

Let us assign the following values:

\({w_x}{\bf{ = 1}}\)(Weight of \(x\))

\({{\bf{w}}_{\bf{y}}}{\bf{ = 1 }}\)(Weight of \({\bf{y}}\))

\({\bf{T = }}\frac{{\bf{1}}}{{\bf{2}}}\)

If \({\bf{x = 1}}\) and \({\bf{y = 1}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{ y = x + y = 1 + 1 = 2 > T}}\) and thus the threshold gate then returns \({\bf{1}}\).

If \({\bf{x = 1}}\) and \({\bf{y = 0}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y = x + y = 1 + 0 = 1 > T}}\) and thus the threshold gate then returns \({\bf{1}}\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 1}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y = x + y = 0 + 1 = 1 > T}}\) and thus the threshold gate then returns \({\bf{1}}\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 0}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y = x + y = 0 + 0 = 0 < T}}\) and thus the threshold gate then returns \({\bf{0}}\).

Thus, the Boolean function \({\bf{F(x,y) = x + y}}\) can be represented by this threshold gate.

Hence, \({\bf{F(x,y) = x + y}}\) is a threshold function.

04

Check whether the given is threshold or not

(c)

It is given that \({\bf{F(x,y) = xy}}\).

Let us first determine a table of values for all possible values of \({\bf{x}}\).

\(\begin{array}{*{20}{c}}x&y&{F(x,y){\bf{ = }}xy}\\0&0&0\\0&1&0\\1&0&0\\1&1&1\end{array}\)

Let us assign the following values:

\({{\bf{w}}_{\bf{x}}}{\bf{ = 1}}\)(Weight of \({\bf{x}}\))

\({{\bf{w}}_{\bf{y}}}{\bf{ = }}1\)(Weight of \({\bf{y}}\))

\(T = \frac{3}{2}\)

If \({\bf{x = 1}}\) and \({\bf{y = 1}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{ y = x + y = 1 + 1 = 2 > T}}\) and thus the threshold gate then returns \({\bf{1}}\).

If \({\bf{x = 1}}\) and \({\bf{y = 0}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y = x + y = 1 + 0 = 1 < T}}\) and thus the threshold gate then returns \({\bf{0}}\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 1}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y = x + y = 0 + 1 = 1 < T}}\) and thus the threshold gate then returns \({\bf{0}}\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 0}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y = x + y = 0 + 0 = 0 < T}}\) and thus the threshold gate then returns \({\bf{0}}\).

Thus, the Boolean function \({\bf{F(x,y) = xy}}\) can be represented by this threshold gate.

Hence, \({\bf{F(x,y) = xy}}\) is a threshold function.

05

Check whether the given is threshold or not

(d)

It is given that \({\bf{F(x,y) = x}}\mid y\).

Let us first determine a table of values for all possible values of \({\bf{x}}\).

\(\begin{array}{*{20}{c}}x&y&{F(x,y){\bf{ = }}x\mid y}\\0&0&1\\0&1&1\\1&0&1\\1&1&0\end{array}\)

Let us assign the following values:

\({{\bf{w}}_{\bf{x}}}{\bf{ = - 1}}\)(Weight of \({\bf{x}}\))

\({{\bf{w}}_{\bf{y}}}{\bf{ = - }}1\)(Weight of \({\bf{y}}\))

\(T = {\bf{ - }}\frac{3}{2}\)

If \({\bf{x = 1}}\) and \({\bf{y = 1}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{ y = }} - x - y = - 1 - 1 = - 2{\bf{ < T}}\) and thus the threshold gate then returns \({\bf{0}}\).

If \({\bf{x = 1}}\) and \({\bf{y = 0}}\), then \({{\bf{w}}_x}x + {w_y}y = - x - y = - 1 - 0 = - 1 > T\) and thus the threshold gate then returns \({\bf{1}}\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 1}}\), then \({w_x}x + {w_y}y = - x - y = - 0 - 1 = - 1 > T\) and thus the threshold gate then returns \({\bf{1}}\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 0}}\), then \({w_x}x + {w_y}y = - x - y = - 0 - 0 = 0 > {\bf{T}}\) and thus the threshold gate then returns \({\bf{1}}\).

Thus, the Boolean function \({\bf{F(x,y) = x}}\mid y\) can be represented by this threshold gate.

Hence, \({\bf{F(x,y) = x}}\mid y\) is a threshold function.

06

Check whether the given is threshold or not

(e)

It is given that \({\bf{F(x,y) = x}} \downarrow {\bf{y}}\).

Let us first determine a table of values for all possible values of \(x\).

\(\begin{array}{*{20}{c}}x&y&{F(x,y){\bf{ = }}x \downarrow y}\\0&0&1\\0&1&0\\1&0&0\\1&1&0\end{array}\)

Let us assign the following values:

\({{\bf{w}}_{\bf{x}}}{\bf{ = - 1}}\)(Weight of \(x\))

\({{\bf{w}}_{\bf{y}}}{\bf{ = - }}1\)(Weight of \(y\))

\(T = {\bf{ - }}\frac{1}{2}\)

If \({\bf{x = 1}}\) and \({\bf{y = 1}}\), then \({{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{ y = }} - x - y = - 1 - 1 = - 2{\bf{ < T}}\) and thus the threshold gate then returns \(0\).

If \({\bf{x = 1}}\) and \({\bf{y = 0}}\), then \({{\bf{w}}_x}x + {w_y}y = - x - y = - 1 - 0 = - 1{\bf{ < }}T\) and thus the threshold gate then returns \(0\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 1}}\), then \({w_x}x + {w_y}y = - x - y = - 0 - 1 = - 1{\bf{ < }}T\) and thus the threshold gate then returns \(0\).

If \(x{\bf{ = 0}}\) and \({\bf{y = 0}}\), then \({w_x}x + {w_y}y = - x - y = - 0 - 0 = 0 > {\bf{T}}\) and thus the threshold gate then returns \({\bf{1}}\).

Thus, the Boolean function \(F({\bf{x,y) = }}x \downarrow y\) can be represented by this threshold gate.

Hence, \(F({\bf{x,y) = }}x \downarrow y\) is a threshold function.

07

Check whether the given is threshold or not

(f)

It is given that \(F(x,y,{\bf{z) = x + yz}}\).

Let us first determine a table of values for all possible values of \(x\).

\(\begin{array}{*{20}{c}}x&y&z&{yz}&{F(x,y,z){\bf{ = x + }}yz}\\0&0&0&0&0\\0&0&1&0&0\\0&1&0&0&0\\0&1&1&1&1\\1&0&0&0&1\\1&0&1&0&1\\1&1&0&0&1\\1&1&1&1&1\end{array}\)

Let us assign the following values:

\({{\bf{w}}_{\bf{x}}}{\bf{ = }}2\)(Weight of \(x\))

\({{\bf{w}}_{\bf{y}}}{\bf{ = }}1\)(Weight of \(y\))

\({w_z}{\bf{ = 1}}\)(Weight of \({\bf{z}}\))

\(T = \frac{3}{2}\)

Let us then finally check that the threshold is reached for those combinations that need to return \({\bf{1}}\).

\(\begin{array}{*{20}{c}}{\bf{x}}&{\bf{y}}&{\bf{z}}&{{{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y + }}{{\bf{w}}_{\bf{z}}}{\bf{z}}}&{{\bf{Threshold}}}&{{\bf{Returnedvalues}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{{\bf{ 0 + 0 + 0 = 0}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{{\bf{ 0 + 0 + 1 = 1}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{{\bf{ 0 + 1 + 0 = 1}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{{\bf{ 0 + 1 + 1 = 2}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{{\bf{ 2 + 0 + 0 = 2}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{{\bf{ 2 + 0 + 1 = 3}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{{\bf{ 2 + 1 + 0 = 3}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{{\bf{ 2 + 1 + 1 = 4}}}&{{\bf{ > T}}}&{\bf{1}}\end{array}\)

Thus, the Boolean function \(F(x,y,{\bf{z) = x + yz}}\) can be represented by this threshold gate. Hence, \(F(x,y,{\bf{z) = x + yz}}\) is a threshold function.

08

Check whether the given is threshold or not

(g)

It is given that \({\bf{F(w,x,y,z) = w + xy + z}}\).

Let us first determine a table of values for all possible values of \(x\).

\(\begin{array}{*{20}{c}}w&x&y&z&{F(w,x,y,z) = w + xy + z}\\0&0&0&0&0\\0&0&0&1&1\\0&0&1&0&0\\0&0&1&1&1\\0&1&0&0&0\\0&1&0&1&1\\0&1&1&0&1\\0&1&1&1&1\\1&0&0&0&1\\1&0&0&1&1\\1&0&1&0&1\\1&0&1&1&1\\1&1&0&0&1\\1&1&0&1&1\\1&1&1&0&1\\1&1&1&1&1\end{array}\)

Let us assign the following values:

\({w_w} = 2\)(Weight of \({\bf{w}}\))

\({{\bf{w}}_{\bf{x}}}{\bf{ = }}1\)(Weight of \(x\))

\({{\bf{w}}_{\bf{y}}}{\bf{ = }}1\)(Weight of \(y\))

\({w_z}{\bf{ = }}2\)(Weight of \({\bf{z}}\))

\(T = \frac{3}{2}\)

Let us then finally check that the threshold is reached for those combinations that need to return \({\bf{1}}\).

\(\begin{array}{*{20}{c}}{\bf{w}}&{\bf{x}}&{\bf{y}}&{\bf{z}}&{{{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y + }}{{\bf{w}}_{\bf{z}}}{\bf{z}}}&{{\bf{Threshold}}}&{{\bf{Returnedvalues}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{{\bf{0 + 0 + 0 + 0 = 0}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{{\bf{0 + 0 + 0 + 2 = 2}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{{\bf{0 + 0 + 1 + 0 = 1}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{{\bf{0 + 0 + 1 + 2 = 3}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{{\bf{0 + 1 + 0 + 0 = 1}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{{\bf{0 + 1 + 0 + 2 = 3}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{{\bf{0 + 1 + 1 + 0 = 2}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{{\bf{0 + 1 + 1 + 2 = 4}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{{\bf{2 + 0 + 0 + 0 = 2}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{{\bf{2 + 0 + 0 + 2 = 4}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{{\bf{2 + 0 + 1 + 0 = 3}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{{\bf{2 + 0 + 1 + 2 = 5}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{{\bf{2 + 1 + 0 + 0 = 3}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{{\bf{2 + 1 + 0 + 2 = 5}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{{\bf{2 + 1 + 1 + 0 = 4}}}&{{\bf{ > T}}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{{\bf{2 + 1 + 1 + 2 = 6}}}&{{\bf{ > T}}}&{\bf{1}}\end{array}\)

Thus, the Boolean function \({\bf{F(w,x,y,z) = w + xy + z}}\) can be represented by this threshold gate.

Hence, \({\bf{F(w,x,y,z) = w + xy + z}}\) is a threshold function.

09

Check whether the given is threshold or not

(h)

It is given that \({\bf{F(w,x,y,z) = wxz + x\bar y}}z\).

Let us first determine a table of values for all possible values of \(x\).

\(\begin{array}{*{20}{c}}{\bf{w}}&{\bf{x}}&{\bf{y}}&{\bf{z}}&{{\bf{F(w,x,y,z) = wxz + x\bar yz}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}\end{array}\)

Let us assign the following values:

\({w_w} = \frac{1}{2}\)(Weight of \({\bf{w}}\))

\({{\bf{w}}_{\bf{x}}}{\bf{ = }}1\)(Weight of \(x\))

\({{\bf{w}}_{\bf{y}}}{\bf{ = - }}\frac{1}{2}\)(Weight of \(y\))

\({w_z}{\bf{ = }}1\)(Weight of \(z\))

\(T = \frac{7}{4}\)

Let us then finally check that the threshold is reached for those combinations that need to return \(1\).

\(\begin{array}{*{20}{c}}{\bf{w}}&{\bf{x}}&{\bf{y}}&{\bf{z}}&{{{\bf{w}}_{\bf{x}}}{\bf{x + }}{{\bf{w}}_{\bf{y}}}{\bf{y + }}{{\bf{w}}_{\bf{z}}}{\bf{z}}}&{{\bf{Threshold}}}&{{\bf{Returnedvalues}}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{{\bf{0 + 0 + 0 + 0 = 0}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{{\bf{0 + 0 + 0 + 1 = 1}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{{\bf{0 + 0 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 = - }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{{\bf{0 + 0 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 = }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{{\bf{0 + 1 + 0 + 0 = 1}}}&{{\bf{ < T}}}&{}\\{\bf{0}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{{\bf{0 + 1 + 0 + 1 = 2}}}&{{\bf{ > T}}}&{\bf{0}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{{\bf{0 + 1 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 = }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ < T}}}&{\bf{1}}\\{\bf{0}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{{\bf{0 + 1 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 = }}\frac{{\bf{3}}}{{\bf{2}}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 + 0 + 0 = }}\frac{{\bf{1}}}{{\bf{2}}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{0}}&{\bf{1}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 + 0 + 1 = }}\frac{{\bf{3}}}{{\bf{2}}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 = 0}}}&{{\bf{ < T}}}&{}\\{\bf{1}}&{\bf{0}}&{\bf{1}}&{\bf{1}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 = 1}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 + 0 + 0 = }}\frac{{\bf{3}}}{{\bf{2}}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{0}}&{\bf{1}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 + 0 + 1 = }}\frac{{\bf{5}}}{{\bf{2}}}}&{{\bf{ > T}}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{0}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 0 = 1}}}&{{\bf{ < T}}}&{\bf{0}}\\{\bf{1}}&{\bf{1}}&{\bf{1}}&{\bf{1}}&{\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 - }}\frac{{\bf{1}}}{{\bf{2}}}{\bf{ + 1 = 2}}}&{{\bf{ > T}}}&{\bf{0}}\end{array}\)

Thus, the Boolean function \({\bf{F(w,x,y,z) = wxz + x\bar y}}z\) can be represented by this threshold gate.

Hence, \({\bf{F(w,x,y,z) = wxz + x\bar y}}z\) is a threshold function.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free