Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Use the Quine-McCluskey method to simplify the sum-of-products expansions in Example \(3\).

Short Answer

Expert verified

\({\bf{(a)}}\)Simplified sum-of-products expansion is \({\bf{x\bar z + x\bar z + \bar xyz}}\)

\({\bf{(b)}}\)Simplified sum-of-products expansion is \({\bf{\bar y + \bar xz}}\)

\({\bf{(c)}}\)Simplified sum-of-products expansion is\({\bf{ x + z + \bar y}}\)

\({\bf{(d)}}\) Simplified sum-of-products expansion is\({\bf{ x\bar z + \bar x\bar y}}\)

Step by step solution

Achieve better grades quicker with Premium

  • Unlimited AI interaction
  • Study offline
  • Say goodbye to ads
  • Export flashcards

Over 22 million students worldwide already upgrade their learning with Vaia!

01

Definition

As seen that K-maps can be used to generate minimal extensions of Boolean functions as Boolean sums of Boolean products. For these reasons, there is a need for a mechanizable method to simplify sum-of-product expansions. The Quine–McCluskey method is such a procedure& can be used for Boolean functions in any number of variables. The Quine-McCluskey method consists of two parts. The first part finds the terms that qualify for inclusion in a minimal extension as a Boolean sum of Boolean products. The second part determines which of these terms are actually used.

02

Using Quine-McCluskey method

\({\bf{xy\bar z + x\bar y\bar z + \bar xyz + \bar x\bar y\bar z}}\)

For every given term, replace a variable \({\bf{x}}\) by \({\bf{1}}\) and replace the complement of a variable \({\bf{\bar x}}\) by \(0\) to obtain the string.

\(\begin{array}{*{20}{r}}{{\bf{ INITIAL }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{\bf{1}}&{{\bf{xy\bar z}}}&{{\bf{110}}}\\{\bf{2}}&{{\bf{\bar xyz}}}&{{\bf{011}}}\\{\bf{3}}&{{\bf{x\bar y\bar z}}}&{{\bf{100}}}\\{\bf{4}}&{{\bf{\bar x\bar y\bar z}}}&{{\bf{000}}}\end{array}\)

Step \({\bf{1}}\)Minterms that can differ exactly \({\bf{1}}\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 1 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,3)}}}&{{\bf{x\bar z}}}&{{\bf{1 - 0}}}\\{{\bf{(3,4)}}}&{{\bf{\bar y\bar z}}}&{{\bf{ - 00}}}\end{array}\)

The final two strings do not differ by \({\bf{1}}\) bit, thus the algorithm will discontinue.

The simplified sum-of-products expansion then is the sum of all terms in the last step \({\bf{x\bar z}}\)and \({\bf{x\bar z}}\)and the terms in the previous step that was not included in these terms (which is the second term \({\bf{\bar xyz}}\) ).

Simplified sum-of-products expansion\({\bf{x\bar z + x\bar z + \bar xyz}}\).

03

Using Quine-McCluskey method

\({\bf{x\bar yz + x\bar y\bar z + \bar xyz + \bar x\bar yz + \bar x\bar y\bar z}}\)

For every given term, replace a variable \({\bf{x}}\) by \({\bf{1}}\) and replace the complement of a variable \({\bf{\bar x}}\) by \(0\) to obtain the string.

\(\begin{array}{*{20}{r}}{{\bf{INITIAL}}}&{{\bf{Term}}}&{{\bf{String}}}\\{\bf{1}}&{{\bf{x\bar yz}}}&{{\bf{101}}}\\{\bf{2}}&{{\bf{\bar xyz}}}&{{\bf{011}}}\\{\bf{3}}&{{\bf{x\bar y\bar z}}}&{{\bf{100}}}\\{\bf{4}}&{{\bf{\bar x\bar yz}}}&{{\bf{001}}}\\{\bf{5}}&{{\bf{\bar x\bar y\bar z}}}&{{\bf{000}}}\end{array}\)

Step \({\bf{1}}\)Minterms that can differ exactly \({\bf{1}}\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 1 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,3)}}}&{{\bf{x\bar y}}}&{{\bf{10 - }}}\\{{\bf{(1,4)}}}&{{\bf{\bar yz}}}&{{\bf{ - 01}}}\\{{\bf{(2,4)}}}&{{\bf{\bar xz}}}&{{\bf{0 - 1}}}\\{{\bf{(3,5)}}}&{{\bf{\bar y\bar z}}}&{{\bf{ - 00}}}\\{{\bf{(4,5)}}}&{{\bf{\bar x\bar y}}}&{{\bf{00 - }}}\end{array}\)

Step \(2\)Minterms that can differ exactly \({\bf{1}}\) position in the bit string of the previous step are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 2 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,3,4,5)}}}&{{\bf{\bar y}}}&{{\bf{ - 0 - }}}\end{array}\)

In the last step there is only one string left, so the algorithm breaks down

The simplified sum-of-products expansion then is the sum of all terms in the last step \({\bf{(\bar y)}}\) and then only term \(2\) is still missing, which is contained in \({\bf{\bar xz}}\) from the first step.

Simplified sum-of-products expansion\({\bf{\bar y + \bar xz}}\).

04

Using Quine-McCluskey method

\({\bf{xyz + xy\bar z + x\bar yz + x\bar y\bar z + \bar xyz + \bar x\bar yz + \bar x\bar y\bar z}}\)

For every given term, replace a variable \({\bf{x}}\) by \({\bf{1}}\) and replace the complement of a variable \({\bf{\bar x}}\) by \(0\) to obtain the string.

\(\begin{array}{*{20}{r}}{{\bf{ INITIAL }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{\bf{1}}&{{\bf{xyz}}}&{{\bf{111}}}\\{\bf{2}}&{{\bf{xy\bar z}}}&{{\bf{110}}}\\{\bf{3}}&{{\bf{x\bar yz}}}&{{\bf{101}}}\\{\bf{4}}&{{\bf{\bar xyz}}}&{{\bf{011}}}\\{\bf{5}}&{{\bf{x\bar y\bar z}}}&{{\bf{100}}}\\{\bf{6}}&{{\bf{\bar x\bar yz}}}&{{\bf{001}}}\\{\bf{7}}&{{\bf{\bar x\bar y\bar z}}}&{{\bf{000}}}\end{array}\)

Step \({\bf{1}}\)Minterms that can differ exactly \({\bf{1}}\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 1 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,2)}}}&{{\bf{xy}}}&{{\bf{11 - }}}\\{{\bf{(1,3)}}}&{{\bf{x\bar y}}}&{{\bf{10 - }}}\\{{\bf{(1,4)}}}&{{\bf{\bar yz}}}&{{\bf{ - 01}}}\\{{\bf{(2,5)}}}&{{\bf{x\bar z}}}&{{\bf{1 - 0}}}\\{{\bf{(3,5)}}}&{{\bf{x\bar y}}}&{{\bf{10 - }}}\\{{\bf{(3,6)}}}&{{\bf{\bar yz}}}&{{\bf{ - 01}}}\\{{\bf{(4,6)}}}&{{\bf{\bar xz}}}&{{\bf{0 - 1}}}\\{{\bf{(5,7)}}}&{{\bf{\bar y\bar z}}}&{{\bf{ - 00}}}\\{{\bf{(6,7)}}}&{{\bf{\bar x\bar y}}}&{{\bf{00 - }}}\end{array}\)

Step \(2\)Minterms that can differ exactly \({\bf{1}}\) position in the bit string of the previous step are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 2 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,2,3,5)}}}&{\bf{x}}&{{\bf{1 - - }}}\\{{\bf{(1,3,4,6)}}}&{\bf{z}}&{{\bf{ - - 1}}}\\{{\bf{(3,5,6,7)}}}&{{\bf{\bar y}}}&{{\bf{ - 0 - }}}\end{array}\)

The final three strings do not differ by \({\bf{1}}\) bit (pairwise), thus the algorithm will discontinue.

The simplified sum-of-products expansion then is the sum of all terms in the last step \({\bf{(x,z,\bar y)}}\), which we note includes initial terms \({\bf{1}}\) to \(7\) .

Simplified sum-of-products expansion\({\bf{ x + z + \bar y}}\).

05

Step 5:Using Quine-McCluskey method

\({\bf{xy\bar z + x\bar y\bar z + \bar x\bar yz + \bar x\bar y\bar z}}\)

For every given term, replace a variable \({\bf{x}}\) by \({\bf{1}}\) and replace the complement of a variable \({\bf{\bar x}}\) by \(0\) to obtain the string.

\(\begin{array}{*{20}{r}}{{\bf{ INITIAL }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{\bf{1}}&{{\bf{xy\bar z}}}&{{\bf{110}}}\\{\bf{2}}&{{\bf{x\bar y\bar z}}}&{{\bf{100}}}\\{\bf{3}}&{{\bf{\bar x\bar yz}}}&{{\bf{001}}}\\{\bf{4}}&{{\bf{\bar x\bar y\bar z}}}&{{\bf{000}}}\end{array}\)

Step \({\bf{1}}\)Minterms that can differ exactly \({\bf{1}}\) position in the bit string are represented by a new string with a dash in that position (and thus are combined into the same group).

\(\begin{array}{*{20}{r}}{{\bf{ STEP 1 }}}&{{\bf{ Term }}}&{{\bf{ String }}}\\{{\bf{(1,2)}}}&{{\bf{x\bar z}}}&{{\bf{1 - 0}}}\\{{\bf{(3,4)}}}&{{\bf{\bar x\bar y}}}&{{\bf{00 - }}}\end{array}\)

The final two strings do not differ by \({\bf{1}}\) bit, thus the algorithm will discontinue.

The simplified sum-of-products expansion then is the sum of all terms in the last step \({\bf{x\bar z}}\) and \({\bf{\bar x\bar y}}\), which will include all initial terms \({\bf{1}}\) to \(4\) .

Simplified sum-of-products expansion\({\bf{ x\bar z + \bar x\bar y}}\).

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Study anywhere. Anytime. Across all devices.

Sign-up for free