Chapter 12: Q20E (page 842)
Use \({\bf{K}}\)-maps to find a minimal expansion as a Boolean sum of Boolean products of Boolean functions that have as input the binary code for each decimal digit and produce as output \({\bf{1}}\) if and only if the digit corresponding to the input is
\({\bf{a)}}\)odd.
\({\bf{b)}}\)not divisible by \({\bf{3}}\).
\({\bf{c)}}\)not \({\bf{4,5,}}\) or \({\bf{6}}\).
Short Answer
\({\bf{a)}}\)The minimal expansion is \({\bf{z}}\)
\({\bf{b)}}\)The minimal expansion is \({\bf{w\bar z + x\bar y + xz + \bar xy\bar z + \bar w\bar yz}}\)
\({\bf{c)}}\) The minimal expansion is \({\bf{\bar x + yz}}\)